## Supporting Information for

## Single-Ion Magnet behaviour in $[U(Tp^{Me2})_2I]$

by

Joana T. Coutinho, Maria A. Antunes, Laura C. J. Pereira, Hélène Bolvin, Joaquim Marçalo,

Marinella Mazzanti and Manuel Almeida

## EXPERIMENTAL

General Preparative Procedures. All manipulations were carried out using vacuum line techniques and a purified nitrogen-filled glove box. THF and *n*-hexane were pre-dried using 4 Å molecular sieves, freshly distilled from sodium-benzophenone under an atmosphere of N<sub>2</sub> and degassed with freeze pump-thaw cycles. Benzene- $d_6$  was pre-dried over Na and distilled from sodium-benzophenone under an atmosphere of Ar. <sup>1</sup>H NMR spectra were recorded at 296 K on a Varian INOVA-300 spectrometer operating at 300 MHz and referenced internally to the residual proton solvent resonances relative to tetramethylsilane (benzene- $d_6$ ,  $\delta$  7.16 ppm). CHN elemental analyses were performed in-house using an EA110 CE Instruments automatic analyzer.

Synthesis of  $[U(Tp^{Me2})_2I]$  (1). Compound 1 was prepared according to the method previously reported by Takats and coworkers [1] and crystallized by slow evaporation of a THF solution. The crystals were washing with *n*-hexane and vacuum dried. The formulation and purity of the compound were checked by <sup>1</sup>H NMR spectroscopy and CHN elemental analysis. Data are in agreement with those previously reported. Found: C, 37.5; H, 5.0; N, 17.7. C<sub>30</sub>H<sub>44</sub>B<sub>2</sub>IN<sub>12</sub>U requires C, 37.7; H, 4.6; N, 17.5 %.  $\delta_{\rm H}$  (300.1 MHz; C<sub>6</sub>D<sub>6</sub>; Me<sub>4</sub>Si; 296 K): 7.40 (6H, s, 4-*H* of Tp<sup>Me2</sup>), 0.27 (18H, s, CH<sub>3</sub> of Tp<sup>Me2</sup>), -11.66 (18H, s, CH<sub>3</sub> of Tp<sup>Me2</sup>).

**Magnetic measurements.** Magnetic measurements were performed in polycrystalline powder samples imbedded in hexane and sealed in a 4 mm inner diameter quartz tube. Measurements of 1 were taken using a 6.5 T S700X SQUID magnetometer (Cryogenic Ltd.) in the temperature range 1.8-300 K under several applied magnetic fields from 100 G to 1 kG. For compound 2, a <sup>3</sup>He insert adapted to the SQUID magnetometer was used to measure below 2 K both temperature dependent and field dependent magnetization curves at fixed temperatures. Above 1.8 K field dependent magnetization up to 5 T at different temperatures and AC susceptibility measurements in 1 were taken using a MagLab 2000 system (Oxford Instruments). The paramagnetic data was obtained after a correction for the core diamagnetism estimated, using Pascal's constants, as  $\chi_D = -753.6 \times 10^{-6}$  and  $-811.4 \times 10^{-6}$  emu/mol for 1 and 2 respectively. Temperature dependence of AC magnetic susceptibility was measured using a 5 Oe oscillating field in the 30-10000 Hz frequency

range under zero and 500 Oe static fields. Additional isothermal AC susceptibility measurements,  $\chi_{AC} = f(\omega)$ , were taken in the 10-10000 Hz frequency range, within 1.7 and 6 K, the temperature range in which the relaxation time reaches a maximum. Cole-Cole plots were fitted using a generalized Debye model [2],

$$\chi(\omega) = \chi_{\rm S} + (\chi_{\rm T} + \chi_{\rm S}) / (1 + i\omega\tau)^{1-\alpha}$$

which describes both real and imaginary components of AC susceptibility,  $\chi'$  and  $\chi''$  in terms of frequency, isothermal susceptibility ( $\chi_T$ ), adiabatic susceptibility ( $\chi_S$ ), relaxation time ( $\tau$ ), and a variable representing the distribution of relaxation times ( $\alpha$ ).



Figure SI1. Reduced magnetisation plots (M vs. B/T) for 1 (left) and 2 (right).

**Quantum Chemistry Calculations**. The excited states of the complexes have been calculated with the SO-CASPT2 method using the MOLCAS76 suite of programs [3]. A ANO-RCC basis sets of TZP and DZ qualities were used for the Uranium and the other atoms respectively. The active space consists of 3 electrons in the 7 5f orbitals. First, a CASSCF (Complete Active Space Self Consistent Field) calculation was performed [4], then dynamical correlation was included by the CASPT2 (Complete Active Space Perturbation Theory at the 2<sup>nd</sup> order) method [5] and finally, the spin-orbit coupling was evaluated by a state interaction between the CASPT2 wave functions by the RASSI (Restricted Active Space

State Interaction) method [6]. g factors were calculated according to reference [7]. Expectation values of J are calculated by diagonalizing the matrix of the  $\vec{L} + \vec{S}$  operator in the 10 first states (since there is a large energy gap between the 10<sup>th</sup> and 11<sup>th</sup> states).

## **References:**

[1] Y. Sun, R. McDonald, J. Takats, V. W. Day and T. A. Eberspacher, *Inorg. Chem.*, 1994, **33**, 4433.

[2] (a) K. S. Cole and R. H. Cole, *J. Chem. Phys.* 1941, **9**, 341; (b) S. M. J Aubin, Z. Sun, L. Pardi, J.Krzystek, K. Folting, L. C.Brunel, A. L.Rheingold, G. Christou, and D. N. Hendrickson, *Inorg. Chem.* 1999, **38**, 5329.

[3] F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. Å Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, R. Lindh, *J. Comp. Chem.*, 2010, **31**, 224.

[4] B. O Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys., 1980, 157.

[5] K. Andersson, P. Å. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem., 1990, 5483.

[6] P. Å. Malmqvist, B. O. Roos, and B. Schimmelpfennig, Chem. Phys. Lett. 2002, 357, 230.

[7] H. Bolvin ChemPhysChem. 2006, 7, 1575.

**Table S1.** Experimental effective energy barriers,  $E_{eff}$ , and blocking temperatures,  $T_b$ , and calculated (CASPT2) energy gaps,  $\Delta E$ , g-values, angles between the principal magnetic axes of the ground state and the first excited state,  $\theta$  and expectation values of J, L, S, for mononuclear U compounds.

| Compound                                              | E <sub>eff</sub> /cm <sup>-1</sup> | $T_{\rm b}/{ m K}$ | ΔE/cm <sup>-1</sup> | <b>g</b> 1 | $\mathbf{g}_2$ | <b>g</b> <sub>3</sub> | θ  | J   | L   | S   |
|-------------------------------------------------------|------------------------------------|--------------------|---------------------|------------|----------------|-----------------------|----|-----|-----|-----|
| 1                                                     | 21.0                               | 3.5                | 146                 | 4.9        | 1.1            | 0.5                   | 77 | 4.3 | 5.4 | 1.1 |
| 2                                                     | 18.2                               | 4.5                | 138                 | 3.4        | 1.3            | 0.7                   | 65 | 4.2 | 5.5 | 1.3 |
| [U(H <sub>2</sub> Bpz <sub>2</sub> ) <sub>3</sub> ] * | 8.                                 | ~3                 | 28                  | 5.1        | 1.0            | 0.4                   | 56 | 4.2 | 5.4 | 1.1 |

\* J. D. Rinehart, K. R. Meihaus, and J. R. Long, J. Am. Chem. Soc., 2010, 132, 7572.