Supporting Information

Syntheses and Structures of Zr_4 Tetrahedral Clusters Containing Direct Zr-Zr Bonds: The Missing Cluster in the Series Zr_n (n = 2-6)

Hsueh-Hui Yang,[†] Chung-Hsien Chien,[‡] Chien-Chan Yang,[‡] Fu-Chen Liu,^{*,‡} Agnes H. H.

Chang,**[‡] Gene-Hsian Lee,^{||} Shie-Ming Peng^{||}

[†]Department of Medical Research, Buddhist Tzu Chi General Hospital and General Education

Center, Tzu Chi College of Technology, Hualien, 970, Taiwan, ROC

[‡]Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan, ROC

^{II}Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC

Table S1.	Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters	
	$(\text{\AA}^2 \text{x } 10^3)$ for $[(\mu_2 - \text{H})_8(\mu_2 - \text{Cl})_2(\text{Cp}*\text{Zr})_4] \cdot 2(\text{C}_7\text{H}_8).$	2pg
Table S2.	Bond lengths [Å] and angles [°] for $[(\mu_2-H)_8(\mu_2-Cl)_2(Cp^*Zr)_4]\cdot 2(C_7H_8)$.	9pg
Table S3.	Anisotropic displacement parameters ($\mathring{A}^2 x 10^3$) for $[(\mu_2-H)_8(\mu_2-Cl)_2(Cp*Zr)_4]\cdot 2(C_7H_8).$	2pg
Table S4.	Hydrogen coordinates (x 10 ⁴) and isotropic displacement parameters (Å ² x 10 ³) for $[(\mu_2-H)_8(\mu_2-Cl)_2(Cp*Zr)_4]\cdot 2(C_7H_8)$.	2pg
Table S5.	Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters	
	$(\text{\AA}^2 x \ 10^3)$ for $[(\mu_2 - \text{H})_6(\text{Cp}*\text{Zr})_4]$.	2pg
Table S6.	Bond lengths [Å] and angles [°] for $[(\mu_2-H)_6(Cp^*Zr)_4]$.	7pg
Table S7.	Anisotropic displacement parameters (Å ² x 10 ³) for $[(\mu_2-H)_6(Cp*Zr)_4]$.	2pg

Table S8. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3)

for $[(\mu_2-H)_6(Cp^*Zr)_4]$.

2pg

- Table S9. Wiberg bond indices (bond order) obtained by B3LYP with basis LanL2DZ for Zr, and cc-pVDZ for Cl, C, and H.
- Figure S1. Powder X-ray diffraction pattern of $[(\mu_2-H)_6(Cp^*Zr)_4]$ (a) calculated from a single crystal diffraction data (b) from powders 1pg

	Х	У	Z	U(eq)	
$\overline{\operatorname{Zr}(1)}$	1519(1)	13907(1)	7717(1)	32(1)	
Zr(2)	2345(1)	15452(1)	8609(1)	30(1)	
Zr(3)	2705(1)	13441(1)	8630(1)	32(1)	
Zr(4)	3474(1)	14927(1)	7691(1)	31(1)	
Cl(1)	648(1)	15237(1)	8163(1)	40(1)	
Cl(2)	4373(1)	13627(1)	8152(1)	39(1)	
C(1)	1000(3)	12571(3)	7235(2)	39(1)	
C(2)	1159(3)	13261(3)	6894(2)	42(1)	
C(3)	427(4)	13925(3)	6975(2)	49(1)	
C(4)	-182(3)	13648(4)	7354(2)	46(1)	
C(5)	157(3)	12807(3)	7517(2)	41(1)	
C(6)	1535(4)	11695(4)	7242(2)	60(2)	
C(7)	1885(4)	13211(4)	6482(2)	70(2)	
C(8)	257(5)	14735(4)	6669(3)	84(2)	
C(9)	-1104(4)	14101(4)	7539(3)	76(2)	
C(10)	-343(4)	12201(4)	7872(2)	69(2)	
C(11)	2339(4)	17101(3)	8807(2)	42(1)	
C(12)	1443(4)	16750(3)	9000(2)	45(1)	
C(13)	1691(3)	16155(3)	9380(2)	39(1)	
C(14)	2737(3)	16143(3)	9419(2)	37(1)	
C(15)	3126(4)	16724(3)	9074(2)	40(1)	
C(16)	2405(5)	17830(4)	8436(2)	75(2)	
C(17)	422(4)	17065(4)	8862(2)	72(2)	
C(18)	935(4)	15716(4)	9710(2)	63(2)	
C(19)	3317(4)	15700(4)	9814(2)	58(2)	
C(20)	4211(4)	17000(4)	9042(2)	64(2)	
C(21)	1957(4)	12200(4)	9129(2)	55(2)	
C(22)	2383(4)	12804(4)	9464(2)	49(1)	
C(23)	3414(4)	12785(3)	9394(2)	46(1)	
C(24)	3616(4)	12167(4)	9025(2)	49(1)	
C(25)	2716(5)	11811(3)	8862(2)	54(1)	
C(26)	875(5)	11941(5)	9118(3)	107(3)	
C(27)	1824(6)	13263(5)	9861(2)	96(3)	
C(28)	4199(5)	13235(5)	9701(2)	86(2)	
C(29)	4646(5)	11845(5)	8877(3)	98(3)	
C(30)	2625(7)	11049(4)	8499(3)	124(4)	
C(31)	4829(3)	16016(3)	7456(2)	38(1)	
C(32)	5143(4)	15153(3)	7292(2)	45(1)	
C(33)	4497(4)	14867(3)	6922(2)	42(1)	
C(34)	3785(4)	15541(3)	6845(2)	43(1)	
C(35)	3976(3)	16244(3)	7185(2)	37(1)	

Table S1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $[(\mu_2-H)_8(\mu_2-Cl)_2(Cp*Zr)_4]\cdot 2(C_7H_8)$.

C(36)	5383(4)	16624(4)	7796(2)	56(2)
C(37)	6078(4)	14675(4)	7450(3)	74(2)
C(38)	4648(5)	14044(4)	6627(2)	77(2)
C(39)	3032(5)	15589(4)	6444(2)	66(2)
C(40)	3461(2)	17121(2)	7185(1)	55(2)
C(41)	2307(2)	16049(2)	11076(1)	165(4)
C(42)	1694(2)	15309(2)	11039(1)	107(3)
C(43)	2098(2)	14458(2)	11047(1)	161(4)
C(44)	3116(2)	14347(2)	11092(1)	117(3)
C(45)	3729(2)	15087(2)	11130(1)	123(3)
C(46)	3324(2)	15938(2)	11122(1)	90(2)
C(47)	1825(4)	16857(4)	11048(2)	164(4)
C(48)	2698(4)	10227(4)	10033(2)	256(8)
C(49)	1689(4)	10231(4)	10131(2)	334(8)
C(50)	1142(4)	9452(4)	10083(2)	334(8)
C(51)	1603(4)	8670(4)	9937(2)	294(9)
C(52)	2612(4)	8665(4)	9838(2)	255(8)
C(53)	3160(4)	9444(4)	9887(2)	296(10)
C(54)	3360(9)	10892(9)	10066(3)	310(10)
H(1)	2340(30)	12970(30)	7949(16)	46
H(2)	1420(30)	13460(30)	8207(15)	46
H(3)	1750(30)	14330(30)	8897(17)	46
H(4)	3260(30)	14580(30)	8862(17)	46
H(5)	3600(30)	15510(30)	8275(17)	46
H(6)	2690(30)	15900(30)	7949(16)	46
H(7)	2130(30)	15030(30)	7419(16)	46
H(8)	2820(30)	13870(30)	7343(16)	46

 $U(eq) \mbox{ is defined as one third of } \mbox{ the trace of the orthogonalized } U^{ij} \mbox{ tensor.}$

Table S2. Bond lengths [Å	A] and angles [°] for [($\mu_2\text{-H})_8(\mu_2\text{-Cl})_2(\text{Cp*Zr})_4]\cdot 2(\text{C})$	$_{7}H_{8}$).
Zr(1)-C(1)	2.504(4)	Zr(4)-H(7)	1.96(5)
Zr(1)-C(2)	2.507(5)	Zr(4)-H(8)	2.05(5)
Zr(1)-C(3)	2.515(5)	C(1)-C(2)	1.412(7)
Zr(1)-C(5)	2.533(4)	C(1)-C(5)	1.421(6)
Zr(1)-C(4)	2.536(5)	C(1)-C(6)	1.501(7)
Zr(1)- $Cl(1)$	2.6206(12)	C(2)-C(3)	1.422(7)
Zr(1)-Zr(3)	3.0539(6)	C(2)-C(7)	1.499(7)
Zr(1)- $Zr(4)$	3.0541(6)	C(3)-C(4)	1.390(7)
Zr(1)- $Zr(2)$	3.5514(6)	C(3)-C(8)	1.496(8)
Zr(1)-H(1)	1.90(5)	C(4)-C(5)	1.416(7)
Zr(1)-H(2)	1.51(4)	C(4)-C(9)	1.508(7)
Zr(1)-H(7)	2.06(4)	C(5)-C(10)	1.496(7)
Zr(1)-H(8)	2.04(4)	C(6)-H(6A)	0.9700
Zr(2)-C(14)	2.510(4)	C(6)-H(6B)	0.9700
Zr(2)-C(13)	2.525(4)	C(6)-H(6C)	0.9700
Zr(2)-C(15)	2.527(5)	C(7)-H(7A)	0.9700
Zr(2)-C(11)	2.534(5)	C(7)-H(7B)	0.9700
Zr(2)-C(12)	2.537(5)	C(7)-H(7C)	0.9700
Zr(2)- $Cl(1)$	2.6176(12)	C(8)-H(8A)	0.9700
Zr(2)- $Zr(4)$	3.0516(6)	C(8)-H(8B)	0.9700
Zr(2)- $Zr(3)$	3.0585(6)	C(8)-H(8C)	0.9700
Zr(2)-H(3)	2.03(4)	C(9)-H(9A)	0.9700
Zr(2)-H(4)	1.93(5)	C(9)-H(9B)	0.9700
Zr(2)-H(5)	1.93(4)	C(9)-H(9C)	0.9700
Zr(2)-H(6)	1.99(4)	C(10)-H(10A)	0.9700
Zr(3)-C(23)	2.507(5)	C(10)-H(10B)	0.9700
Zr(3)-C(24)	2.520(5)	C(10)-H(10C)	0.9700
Zr(3)-C(22)	2.520(5)	C(11)-C(15)	1.409(7)
Zr(3)-C(21)	2.524(5)	C(11)-C(12)	1.424(7)
Zr(3)-C(25)	2.530(5)	C(11)-C(16)	1.498(7)
Zr(3)- $Cl(2)$	2.6239(12)	C(12)-C(13)	1.414(7)
Zr(3)- $Zr(4)$	3.5643(6)	C(12)-C(17)	1.507(7)
Zr(3)-H(1)	2.06(4)	C(13)-C(14)	1.417(6)
Zr(3)-H(2)	2.09(5)	C(13)-C(18)	1.515(7)
$\operatorname{Zr}(3)$ -H(3)	2.00(4)	C(14)-C(15)	1.391(7)
$\operatorname{Zr}(3)$ -H(4)	1.97(5)	C(14)-C(19)	1.494(7)
Zr(4)-C(35)	2.511(4)	C(15)-C(20)	1.527(7)
Zr(4)-C(33)	2.524(4)	C(16)-H(16A)	0.9700
Zr(4)-C(32)	2.530(5)	C(16)-H(16B)	0.9700
Zr(4)-C(34)	2.532(5)	C(16)-H(16C)	0.9700
Zr(4)-C(31)	2.539(4)	C(17)-H(17A)	0.9700
Zr(4)-Cl(2)	2.6241(12)	C(17)-H(17B)	0.9700
$\operatorname{Zr}(4)$ -H(5)	1.84(5)	C(17)-H(17C)	0.9700
Zr(4)-H(6)	1.95(4)	C(18)-H(18A)	0.9700

Table S2.	Bond lengths [Å] and angles [°] for $[(\mu_2-H)_8(\mu_2-Cl)_2(\mu_$	$Cp*Zr)_4]\cdot 2(C_7H_8)$
-----------	-----------------	--	----------------------------

C(18)-H(18B)	0.9700	C(36)-H(36B)	0.9700
C(18)-H(18C)	0.9700	C(36)-H(36C)	0.9700
C(19)-H(19A)	0.9700	C(37)-H(37A)	0.9700
C(19)-H(19B)	0.9700	C(37)-H(37B)	0.9700
C(19)-H(19C)	0.9700	C(37)-H(37C)	0.9700
C(20)-H(20A)	0.9700	C(38)-H(38A)	0.9700
C(20)-H(20B)	0.9700	C(38)-H(38B)	0.9700
C(20)-H(20C)	0.9700	C(38)-H(38C)	0.9700
C(21)-C(25)	1.390(8)	C(39)-H(39A)	0.9700
C(21)-C(22)	1.414(8)	C(39)-H(39B)	0.9700
C(21)-C(26)	1.513(8)	C(39)-H(39C)	0.9700
C(22)-C(23)	1.407(7)	C(40)-H(40A)	0.9700
C(22)-C(27)	1.494(7)	C(40)-H(40B)	0.9700
C(23)-C(24)	1.401(7)	C(40)-H(40C)	0.9700
C(23)-C(28)	1.512(8)	C(41)-C(47)	1.379(7)
C(24)-C(25)	1.401(8)	C(41)-C(42)	1.3899
C(24)-C(29)	1.529(7)	C(41)-C(46)	1.3900
C(25)-C(30)	1.520(8)	C(42)-C(43)	1.3900
C(26)-H(26A)	0.9700	C(42)-H(42A)	0.9400
C(26)-H(26B)	0.9700	C(43)-C(44)	1.3900
C(26)-H(26C)	0.9700	C(43)-H(43A)	0.9400
C(27)-H(27A)	0.9700	C(44)-C(45)	1.3899
C(27)-H(27B)	0.9700	C(44)-H(44A)	0.9400
C(27)-H(27C)	0.9700	C(45)-C(46)	1.3900
C(28)-H(28A)	0.9700	C(45)-H(45A)	0.9400
C(28)-H(28B)	0.9700	C(46)-H(46A)	0.9400
C(28)-H(28C)	0.9700	C(47)-H(47A)	0.9700
C(29)-H(29A)	0.9700	C(47)-H(47B)	0.9700
C(29)-H(29B)	0.9700	C(47)-H(47C)	0.9700
C(29)-H(29C)	0.9700	C(48)-C(54)	1.343(11)
C(30)-H(30A)	0.9700	C(48)-C(53)	1.3898
C(30)-H(30B)	0.9700	C(48)-C(49)	1.3901
C(30)-H(30C)	0.9700	C(49)-C(50)	1.3900
C(31)-C(35)	1.414(6)	C(49)-H(49A)	0.9400
C(31)-C(32)	1.436(7)	C(50)-C(51)	1.3900
C(31)-C(36)	1.504(7)	C(50)-H(50A)	0.9400
C(32)-C(33)	1.407(7)	C(51)-C(52)	1.3900
C(32)-C(37)	1.516(7)	C(51)-H(51A)	0.9400
C(33)-C(34)	1.412(7)	C(52)-C(53)	1.3901
C(33)-C(38)	1.491(7)	C(52)-H(52A)	0.9400
C(34)-C(35)	1.432(7)	C(53)-H(53A)	0.9400
C(34)-C(39)	1.501(7)	C(54)-H(54A)	0.9700
C(35)-C(40)	1.489(5)	C(54)-H(54B)	0.9700
C(36)-H(36A)	0.9700	C(54)-H(54C)	0.9700
C(1)-Zr(1)-C(2)	32.74(15)	C(1)- $Zr(1)$ - $C(3)$	54.27(16)

C(2)- $Zr(1)$ - $C(3)$	32.90(16)	C(5)-Zr(1)-H(2)	80.7(17)
C(1)- $Zr(1)$ - $C(5)$	32.76(15)	C(4)- $Zr(1)$ - $H(2)$	101.6(17)
C(2)- $Zr(1)$ - $C(5)$	53.89(15)	Cl(1)-Zr(1)-H(2)	83.2(17)
C(3)- $Zr(1)$ - $C(5)$	53.49(16)	Zr(3)-Zr(1)-H(2)	38.2(17)
C(1)- $Zr(1)$ - $C(4)$	54.20(15)	Zr(4)-Zr(1)-H(2)	108.8(17)
C(2)- $Zr(1)$ - $C(4)$	53.86(15)	Zr(2)-Zr(1)-H(2)	72.8(17)
C(3)- $Zr(1)$ - $C(4)$	31.95(17)	H(1)-Zr(1)-H(2)	55(2)
C(5)- $Zr(1)$ - $C(4)$	32.44(16)	C(1)- $Zr(1)$ - $H(7)$	124.2(13)
C(1)- $Zr(1)$ - $Cl(1)$	137.03(11)	C(2)- $Zr(1)$ - $H(7)$	92.2(13)
C(2)- $Zr(1)$ - $Cl(1)$	128.98(12)	C(3)-Zr(1)-H(7)	84.6(13)
C(3)- $Zr(1)$ - $Cl(1)$	96.15(12)	C(5)- $Zr(1)$ - $H(7)$	138.1(13)
C(5)- $Zr(1)$ - $Cl(1)$	105.81(11)	C(4)- $Zr(1)$ - $H(7)$	109.7(13)
C(4)- $Zr(1)$ - $Cl(1)$	83.92(11)	Cl(1)- $Zr(1)$ - $H(7)$	74.9(12)
C(1)- $Zr(1)$ - $Zr(3)$	113.38(11)	Zr(3)-Zr(1)-H(7)	107.6(13)
C(2)- $Zr(1)$ - $Zr(3)$	138.76(12)	Zr(4)-Zr(1)-H(7)	39.5(13)
C(3)- $Zr(1)$ - $Zr(3)$	166.94(12)	Zr(2)-Zr(1)-H(7)	67.0(13)
C(5)- $Zr(1)$ - $Zr(3)$	114.19(12)	H(1)-Zr(1)-H(7)	120.5(18)
C(4)- $Zr(1)$ - $Zr(3)$	139.71(13)	H(2)-Zr(1)-H(7)	139(2)
Cl(1)-Zr(1)-Zr(3)	91.55(3)	C(1)-Zr(1)-H(8)	87.3(13)
C(1)- $Zr(1)$ - $Zr(4)$	129.12(11)	C(2)-Zr(1)-H(8)	72.6(13)
C(2)-Zr(1)-Zr(4)	109.86(11)	C(3)-Zr(1)-H(8)	95.6(13)
C(3)-Zr(1)-Zr(4)	118.83(13)	C(5)-Zr(1)-H(8)	120.0(13)
C(5)-Zr(1)-Zr(4)	161.75(11)	C(4)-Zr(1)-H(8)	125.4(13)
C(4)-Zr(1)-Zr(4)	148.38(14)	Cl(1)-Zr(1)-H(8)	130.0(13)
Cl(1)-Zr(1)-Zr(4)	91.03(3)	Zr(3)-Zr(1)-H(8)	87.5(13)
Zr(3)-Zr(1)-Zr(4)	71.402(15)	Zr(4)-Zr(1)-H(8)	41.8(13)
C(1)- $Zr(1)$ - $Zr(2)$	167.31(11)	Zr(2)-Zr(1)-H(8)	95.4(13)
C(2)- $Zr(1)$ - $Zr(2)$	159.22(11)	H(1)-Zr(1)-H(8)	69.3(18)
C(3)- $Zr(1)$ - $Zr(2)$	137.34(12)	H(2)-Zr(1)-H(8)	121(2)
C(5)- $Zr(1)$ - $Zr(2)$	143.50(11)	H(7)-Zr(1)-H(8)	58.1(18)
C(4)- $Zr(1)$ - $Zr(2)$	131.01(11)	C(14)- $Zr(2)$ - $C(13)$	32.68(14)
Cl(1)- $Zr(1)$ - $Zr(2)$	47.28(3)	C(14)- $Zr(2)$ - $C(15)$	32.05(15)
Zr(3)- $Zr(1)$ - $Zr(2)$	54.538(13)	C(13)- $Zr(2)$ - $C(15)$	53.63(15)
Zr(4)- $Zr(1)$ - $Zr(2)$	54.400(12)	C(14)- $Zr(2)$ - $C(11)$	53.64(15)
C(1)- $Zr(1)$ - $H(1)$	75.3(14)	C(13)- $Zr(2)$ - $C(11)$	53.94(16)
C(2)- $Zr(1)$ - $H(1)$	97.3(13)	C(15)- $Zr(2)$ - $C(11)$	32.33(15)
C(3)- $Zr(1)$ - $H(1)$	128.3(14)	C(14)- $Zr(2)$ - $C(12)$	53.75(15)
C(5)- $Zr(1)$ - $H(1)$	90.7(14)	C(13)- $Zr(2)$ - $C(12)$	32.44(16)
C(4)- $Zr(1)$ - $H(1)$	123.1(14)	C(15)- $Zr(2)$ - $C(12)$	53.58(16)
Cl(1)- $Zr(1)$ - $H(1)$	132.1(13)	C(11)- $Zr(2)$ - $C(12)$	32.61(16)
Zr(3)- $Zr(1)$ - $H(1)$	41.5(13)	C(14)- $Zr(2)$ - $Cl(1)$	130.50(11)
Zr(4)- $Zr(1)$ - $H(1)$	82.8(13)	C(13)- $Zr(2)$ - $Cl(1)$	97.88(11)
Zr(2)- $Zr(1)$ - $H(1)$	94.1(14)	C(15)- $Zr(2)$ - $Cl(1)$	133.99(12)
C(1)-Zr(1)-H(2)	95.2(17)	C(11)- $Zr(2)$ - $Cl(1)$	102.60(12)
C(2)-Zr(1)-H(2)	127.9(17)	C(12)- $Zr(2)$ - $Cl(1)$	82.66(12)
C(3)-Zr(1)-H(2)	132.4(17)	C(14)- $Zr(2)$ - $Zr(4)$	137.17(11)

C(13)- $Zr(2)$ - $Zr(4)$	167.40(11)	Zr(3)-Zr(2)-H(5)	85.1(13)
C(15)- $Zr(2)$ - $Zr(4)$	113.81(11)	Zr(1)-Zr(2)-H(5)	88.7(14)
C(11)- $Zr(2)$ - $Zr(4)$	115.52(11)	H(3)-Zr(2)-H(5)	125.0(18)
C(12)- $Zr(2)$ - $Zr(4)$	142.06(12)	H(4)-Zr(2)-H(5)	68.9(19)
Cl(1)- $Zr(2)$ - $Zr(4)$	91.14(3)	C(14)-Zr(2)-H(6)	128.1(14)
C(14)- $Zr(2)$ - $Zr(3)$	110.99(11)	C(13)-Zr(2)-H(6)	134.6(13)
C(13)- $Zr(2)$ - $Zr(3)$	116.91(12)	C(15)-Zr(2)-H(6)	96.0(14)
C(15)- $Zr(2)$ - $Zr(3)$	132.07(11)	C(11)- $Zr(2)$ - $H(6)$	82.1(13)
C(11)- $Zr(2)$ - $Zr(3)$	163.88(11)	C(12)- $Zr(2)$ - $H(6)$	103.6(13)
C(12)- $Zr(2)$ - $Zr(3)$	145.78(12)	Cl(1)- $Zr(2)$ - $H(6)$	79.7(13)
Cl(1)- $Zr(2)$ - $Zr(3)$	91.50(3)	Zr(4)- $Zr(2)$ -H(6)	38.7(13)
Zr(4)- $Zr(2)$ - $Zr(3)$	71.374(14)	Zr(3)- $Zr(2)$ -H(6)	108.5(13)
C(14)- $Zr(2)$ - $Zr(1)$	161.20(11)	Zr(1)- $Zr(2)$ -H(6)	70.6(13)
C(13)- $Zr(2)$ - $Zr(1)$	137.80(11)	H(3)-Zr(2)-H(6)	137.0(19)
C(15)- $Zr(2)$ - $Zr(1)$	166.51(11)	H(4)- $Zr(2)$ - $H(6)$	114.2(19)
C(11)- $Zr(2)$ - $Zr(1)$	141.68(11)	H(5)-Zr(2)-H(6)	49.2(18)
C(12)- $Zr(2)$ - $Zr(1)$	129.99(11)	C(23)- $Zr(3)$ - $C(24)$	32.36(17)
Cl(1)- $Zr(2)$ - $Zr(1)$	47.35(3)	C(23)- $Zr(3)$ - $C(22)$	32.52(16)
Zr(4)- $Zr(2)$ - $Zr(1)$	54.466(12)	C(24)- $Zr(3)$ - $C(22)$	53.49(15)
Zr(3)- $Zr(2)$ - $Zr(1)$	54.418(13)	C(23)- $Zr(3)$ - $C(21)$	53.79(17)
C(14)- $Zr(2)$ - $H(3)$	94.7(13)	C(24)- $Zr(3)$ - $C(21)$	53.24(17)
C(13)- $Zr(2)$ - $H(3)$	83.2(13)	C(22)- $Zr(3)$ - $C(21)$	32.56(18)
C(15)- $Zr(2)$ - $H(3)$	126.7(13)	C(23)- $Zr(3)$ - $C(25)$	53.63(17)
C(11)- $Zr(2)$ - $H(3)$	136.6(13)	C(24)- $Zr(3)$ - $C(25)$	32.22(18)
C(12)- $Zr(2)$ - $H(3)$	106.3(13)	C(22)- $Zr(3)$ - $C(25)$	53.47(17)
Cl(1)- $Zr(2)$ - $H(3)$	74.4(13)	C(21)- $Zr(3)$ - $C(25)$	31.93(18)
Zr(4)- $Zr(2)$ -H(3)	107.9(12)	C(23)- $Zr(3)$ - $Cl(2)$	97.57(12)
Zr(3)- $Zr(2)$ - $H(3)$	40.2(12)	C(24)- $Zr(3)$ - $Cl(2)$	82.89(11)
Zr(1)- $Zr(2)$ -H(3)	66.5(13)	C(22)- $Zr(3)$ - $Cl(2)$	130.06(12)
C(14)- $Zr(2)$ - $H(4)$	80.2(14)	C(21)- $Zr(3)$ - $Cl(2)$	133.95(14)
C(13)- $Zr(2)$ - $H(4)$	102.0(14)	C(25)-Zr(3)-Cl(2)	102.91(15)
C(15)- $Zr(2)$ - $H(4)$	93.8(14)	C(23)- $Zr(3)$ - $Zr(1)$	167.50(12)
C(11)- $Zr(2)$ - $H(4)$	126.1(14)	C(24)- $Zr(3)$ - $Zr(1)$	141.50(14)
C(12)- $Zr(2)$ - $H(4)$	132.7(14)	C(22)- $Zr(3)$ - $Zr(1)$	137.85(13)
Cl(1)- $Zr(2)$ - $H(4)$	130.0(14)	C(21)- $Zr(3)$ - $Zr(1)$	113.82(13)
Zr(4)- $Zr(2)$ -H(4)	78.5(13)	C(25)- $Zr(3)$ - $Zr(1)$	115.53(13)
Zr(3)- $Zr(2)$ -H(4)	38.7(14)	Cl(2)- $Zr(3)$ - $Zr(1)$	90.92(3)
Zr(1)- $Zr(2)$ -H(4)	90.2(14)	C(23)- $Zr(3)$ - $Zr(2)$	117.67(13)
H(3)- $Zr(2)$ - $H(4)$	63.3(18)	C(24)-Zr(3)-Zr(2)	146.65(14)
C(14)- $Zr(2)$ - $H(5)$	102.5(14)	C(22)- $Zr(3)$ - $Zr(2)$	111.38(12)
C(13)- $Zr(2)$ - $H(5)$	133.4(14)	C(21)- $Zr(3)$ - $Zr(2)$	132.48(14)
C(15)- $Zr(2)$ - $H(5)$	80.7(14)	C(25)-Zr(3)-Zr(2)	163.94(13)
C(11)- $Zr(2)$ - $H(5)$	93.4(13)	Cl(2)- $Zr(3)$ - $Zr(2)$	91.30(3)
C(12)- $Zr(2)$ - $H(5)$	126.0(13)	Zr(1)- $Zr(3)$ - $Zr(2)$	71.044(15)
Cl(1)- $Zr(2)$ - $H(5)$	123.5(14)	C(23)- $Zr(3)$ - $Zr(4)$	137.69(12)
Zr(4)- $Zr(2)$ -H(5)	34.8(14)	C(24)- $Zr(3)$ - $Zr(4)$	130.08(11)

C(22)-Zr(3)-Zr(4)	161.02(14)	H(2)-Zr(3)-H(4)	118.9(18)
C(21)- $Zr(3)$ - $Zr(4)$	166.25(14)	H(3)-Zr(3)-H(4)	63.3(18)
C(25)- $Zr(3)$ - $Zr(4)$	141.79(13)	C(35)-Zr(4)-C(33)	54.38(15)
Cl(2)- $Zr(3)$ - $Zr(4)$	47.22(3)	C(35)-Zr(4)-C(32)	54.10(15)
Zr(1)-Zr(3)-Zr(4)	54.302(12)	C(33)- $Zr(4)$ - $C(32)$	32.33(17)
Zr(2)-Zr(3)-Zr(4)	54.223(12)	C(35)-Zr(4)-C(34)	32.98(15)
C(23)- $Zr(3)$ - $H(1)$	135.8(13)	C(33)- $Zr(4)$ - $C(34)$	32.43(16)
C(24)-Zr(3)-H(1)	104.3(13)	C(32)- $Zr(4)$ - $C(34)$	53.60(16)
C(22)-Zr(3)-H(1)	130.8(13)	C(35)-Zr(4)-C(31)	32.51(15)
C(21)-Zr(3)-H(1)	98.2(13)	C(33)-Zr(4)-C(31)	54.25(15)
C(25)-Zr(3)-H(1)	84.1(13)	C(32)- $Zr(4)$ - $C(31)$	32.91(16)
Cl(2)- $Zr(3)$ - $H(1)$	77.8(12)	C(34)- $Zr(4)$ - $C(31)$	54.04(15)
Zr(1)- $Zr(3)$ - $H(1)$	37.6(13)	C(35)- $Zr(4)$ - $Cl(2)$	136.69(11)
Zr(2)- $Zr(3)$ - $H(1)$	106.5(13)	C(33)- $Zr(4)$ - $Cl(2)$	97.07(12)
Zr(4)- $Zr(3)$ - $H(1)$	68.2(12)	C(32)- $Zr(4)$ - $Cl(2)$	84.03(11)
C(23)- $Zr(3)$ - $H(2)$	142.0(12)	C(34)- $Zr(4)$ - $Cl(2)$	129.48(12)
C(24)-Zr(3)-H(2)	131.0(13)	C(31)- $Zr(4)$ - $Cl(2)$	105.54(11)
C(22)-Zr(3)-H(2)	111.5(12)	C(35)- $Zr(4)$ - $Zr(2)$	112.88(11)
C(21)-Zr(3)-H(2)	88.8(12)	C(33)- $Zr(4)$ - $Zr(2)$	166.90(11)
C(25)-Zr(3)-H(2)	99.1(13)	C(32)- $Zr(4)$ - $Zr(2)$	140.22(13)
Cl(2)- $Zr(3)$ - $H(2)$	115.8(11)	C(34)- $Zr(4)$ - $Zr(2)$	138.27(12)
Zr(1)- $Zr(3)$ - $H(2)$	26.5(12)	C(31)- $Zr(4)$ - $Zr(2)$	113.82(11)
Zr(2)- $Zr(3)$ - $H(2)$	80.9(12)	Cl(2)- $Zr(4)$ - $Zr(2)$	91.45(3)
Zr(4)- $Zr(3)$ - $H(2)$	80.3(12)	C(35)- $Zr(4)$ - $Zr(1)$	129.96(11)
H(1)- $Zr(3)$ - $H(2)$	45.6(16)	C(33)- $Zr(4)$ - $Zr(1)$	118.45(12)
C(23)- $Zr(3)$ - $H(3)$	101.7(13)	C(32)- $Zr(4)$ - $Zr(1)$	148.13(13)
C(24)- $Zr(3)$ - $H(3)$	131.7(13)	C(34)- $Zr(4)$ - $Zr(1)$	110.41(11)
C(22)- $Zr(3)$ - $H(3)$	78.9(13)	C(31)- $Zr(4)$ - $Zr(1)$	162.38(11)
C(21)- $Zr(3)$ - $H(3)$	92.0(13)	Cl(2)- $Zr(4)$ - $Zr(1)$	90.91(3)
C(25)- $Zr(3)$ - $H(3)$	123.9(13)	Zr(2)- $Zr(4)$ - $Zr(1)$	71.133(14)
Cl(2)- $Zr(3)$ - $H(3)$	132.0(13)	C(35)- $Zr(4)$ - $Zr(3)$	166.44(11)
Zr(1)- $Zr(3)$ -H(3)	78.9(13)	C(33)- $Zr(4)$ - $Zr(3)$	137.92(11)
Zr(2)- $Zr(3)$ -H(3)	41.0(13)	C(32)- $Zr(4)$ - $Zr(3)$	131.08(11)
Zr(4)- $Zr(3)$ -H(3)	92.1(13)	C(34)- $Zr(4)$ - $Zr(3)$	159.94(11)
H(1)- $Zr(3)$ - $H(3)$	113.9(18)	C(31)- $Zr(4)$ - $Zr(3)$	142.87(11)
H(2)- $Zr(3)$ - $H(3)$	69.8(18)	Cl(2)- $Zr(4)$ - $Zr(3)$	47.22(3)
C(23)- $Zr(3)$ - $H(4)$	85.7(14)	Zr(2)- $Zr(4)$ - $Zr(3)$	54.403(12)
C(24)- $Zr(3)$ - $H(4)$	109.5(14)	Zr(1)- $Zr(4)$ - $Zr(3)$	54.296(12)
C(22)- $Zr(3)$ - $H(4)$	95.8(14)	C(35)- $Zr(4)$ - $H(5)$	94.7(14)
C(21)- $Zr(3)$ - $H(4)$	128.1(13)	C(33)- $Zr(4)$ - $H(5)$	134.1(14)
C(25)-Zr(3)-H(4)	139.0(14)	C(32)- $Zr(4)$ - $H(5)$	103.3(14)
Cl(2)- $Zr(3)$ - $H(4)$	75.1(13)	C(34)- $Zr(4)$ - $H(5)$	127.7(14)
Zr(1)- $Zr(3)$ - $H(4)$	105.5(14)	C(31)- $Zr(4)$ - $H(5)$	81.2(14)
Zr(2)- $Zr(3)$ - $H(4)$	38.0(13)	Cl(2)-Zr(4)-H(5)	83.7(14)
Zr(4)- $Zr(3)$ - $H(4)$	65.2(14)	Zr(2)- $Zr(4)$ -H(5)	37.0(14)
H(1)- $Zr(3)$ - $H(4)$	133.0(19)	Zr(1)- $Zr(4)$ - $H(5)$	107.4(14)

Zr(3)-Zr(4)-H(5)	72.2(14)	C(3)-C(2)-Zr(1)	73.9(3)
C(35)-Zr(4)-H(6)	75.9(13)	C(7)-C(2)-Zr(1)	124.9(3)
C(33)-Zr(4)-H(6)	129.1(13)	C(4)-C(3)-C(2)	108.6(5)
C(32)-Zr(4)-H(6)	122.9(13)	C(4)-C(3)-C(8)	124.9(5)
C(34)-Zr(4)-H(6)	98.7(13)	C(2)-C(3)-C(8)	126.1(6)
C(31)-Zr(4)-H(6)	90.1(13)	C(4)-C(3)-Zr(1)	74.9(3)
Cl(2)-Zr(4)-H(6)	129.6(13)	C(2)-C(3)-Zr(1)	73.2(3)
Zr(2)- $Zr(4)$ - $H(6)$	39.7(13)	C(8)-C(3)-Zr(1)	123.6(4)
Zr(1)- $Zr(4)$ - $H(6)$	84.0(14)	C(3)-C(4)-C(5)	108.1(4)
Zr(3)- $Zr(4)$ - $H(6)$	92.8(13)	C(3)-C(4)-C(9)	127.3(5)
H(5)-Zr(4)-H(6)	51.1(19)	C(5)-C(4)-C(9)	124.3(5)
C(35)-Zr(4)-H(7)	88.5(13)	C(3)-C(4)-Zr(1)	73.2(3)
C(33)-Zr(4)-H(7)	101.0(13)	C(5)-C(4)-Zr(1)	73.7(3)
C(32)- $Zr(4)$ - $H(7)$	130.3(13)	C(9)-C(4)-Zr(1)	123.2(3)
C(34)- $Zr(4)$ - $H(7)$	77.1(13)	C(4)-C(5)-C(1)	108.1(4)
C(31)-Zr(4)-H(7)	121.0(13)	C(4)-C(5)-C(10)	127.0(5)
Cl(2)- $Zr(4)$ - $H(7)$	132.1(13)	C(1)-C(5)-C(10)	124.5(5)
Zr(2)- $Zr(4)$ - $H(7)$	80.2(13)	C(4)-C(5)-Zr(1)	73.9(3)
Zr(1)- $Zr(4)$ - $H(7)$	41.7(13)	C(1)-C(5)-Zr(1)	72.5(2)
Zr(3)- $Zr(4)$ - $H(7)$	93.2(13)	C(10)-C(5)-Zr(1)	125.7(3)
H(5)- $Zr(4)$ - $H(7)$	112.1(19)	C(1)-C(6)-H(6A)	109.5
H(6)-Zr(4)-H(7)	64.7(19)	C(1)-C(6)-H(6B)	109.5
C(35)-Zr(4)-H(8)	117.9(12)	H(6A)-C(6)-H(6B)	109.5
C(33)-Zr(4)-H(8)	79.7(12)	C(1)-C(6)-H(6C)	109.5
C(32)-Zr(4)-H(8)	106.8(12)	H(6A)-C(6)-H(6C)	109.5
C(34)- $Zr(4)$ - $H(8)$	85.8(12)	H(6B)-C(6)-H(6C)	109.5
C(31)-Zr(4)-H(8)	133.8(12)	C(2)-C(7)-H(7A)	109.5
Cl(2)- $Zr(4)$ - $H(8)$	81.3(13)	C(2)-C(7)-H(7B)	109.5
Zr(2)- $Zr(4)$ -H(8)	111.6(12)	H(7A)-C(7)-H(7B)	109.5
Zr(1)- $Zr(4)$ - $H(8)$	41.4(12)	C(2)-C(7)-H(7C)	109.5
Zr(3)- $Zr(4)$ - $H(8)$	74.1(12)	H(7A)-C(7)-H(7C)	109.5
H(5)-Zr(4)-H(8)	144.6(19)	H(7B)-C(7)-H(7C)	109.5
H(6)-Zr(4)-H(8)	121.1(18)	C(3)-C(8)-H(8A)	109.5
H(7)-Zr(4)-H(8)	59.3(18)	C(3)-C(8)-H(8B)	109.5
Zr(2)-Cl(1)-Zr(1)	85.37(3)	H(8A)-C(8)-H(8B)	109.5
Zr(3)-Cl(2)-Zr(4)	85.56(3)	C(3)-C(8)-H(8C)	109.5
C(2)-C(1)-C(5)	107.5(4)	H(8A)-C(8)-H(8C)	109.5
C(2)-C(1)-C(6)	125.2(5)	H(8B)-C(8)-H(8C)	109.5
C(5)-C(1)-C(6)	126.7(5)	C(4)-C(9)-H(9A)	109.5
C(2)-C(1)-Zr(1)	73.7(3)	C(4)-C(9)-H(9B)	109.5
C(5)-C(1)-Zr(1)	74.8(3)	H(9A)-C(9)-H(9B)	109.5
C(6)-C(1)-Zr(1)	124.1(3)	C(4)-C(9)-H(9C)	109.5
C(1)-C(2)-C(3)	107.7(4)	H(9A)-C(9)-H(9C)	109.5
C(1)-C(2)-C(7)	124.3(5)	H(9B)-C(9)-H(9C)	109.5
C(3)-C(2)-C(7)	127.5(5)	C(5)-C(10)-H(10A)	109.5
C(1)-C(2)-Zr(1)	73.5(3)	C(5)-C(10)-H(10B)	109.5

H(10A)-C(10)-H(10B)	109.5	C(13)-C(18)-H(18A)	109.5
C(5)-C(10)-H(10C)	109.5	C(13)-C(18)-H(18B)	109.5
H(10A)-C(10)-H(10C)	109.5	H(18A)-C(18)-H(18B)	109.5
H(10B)-C(10)-H(10C)	109.5	C(13)-C(18)-H(18C)	109.5
C(15)-C(11)-C(12)	107.4(4)	H(18A)-C(18)-H(18C)	109.5
C(15)-C(11)-C(16)	127.1(5)	H(18B)-C(18)-H(18C)	109.5
C(12)-C(11)-C(16)	125.1(5)	C(14)-C(19)-H(19A)	109.5
C(15)-C(11)-Zr(2)	73.6(3)	C(14)-C(19)-H(19B)	109.5
C(12)-C(11)-Zr(2)	73.8(3)	H(19A)-C(19)-H(19B)	109.5
C(16)-C(11)-Zr(2)	124.6(3)	C(14)-C(19)-H(19C)	109.5
C(13)-C(12)-C(11)	107.9(4)	H(19A)-C(19)-H(19C)	109.5
C(13)-C(12)-C(17)	126.9(5)	H(19B)-C(19)-H(19C)	109.5
C(11)-C(12)-C(17)	124.7(5)	C(15)-C(20)-H(20A)	109.5
C(13)-C(12)-Zr(2)	73.3(3)	C(15)-C(20)-H(20B)	109.5
C(11)-C(12)-Zr(2)	73.6(3)	H(20A)-C(20)-H(20B)	109.5
C(17)-C(12)-Zr(2)	125.1(3)	C(15)-C(20)-H(20C)	109.5
C(12)-C(13)-C(14)	107.4(4)	H(20A)-C(20)-H(20C)	109.5
C(12)-C(13)-C(18)	123.8(5)	H(20B)-C(20)-H(20C)	109.5
C(14)-C(13)-C(18)	128.5(5)	C(25)-C(21)-C(22)	108.2(5)
C(12)-C(13)-Zr(2)	74.2(3)	C(25)-C(21)-C(26)	126.5(6)
C(14)-C(13)-Zr(2)	73.1(2)	C(22)-C(21)-C(26)	124.8(6)
C(18)-C(13)-Zr(2)	123.7(3)	C(25)-C(21)-Zr(3)	74.3(3)
C(15)-C(14)-C(13)	108.6(4)	C(22)-C(21)-Zr(3)	73.5(3)
C(15)-C(14)-C(19)	125.1(5)	C(26)-C(21)-Zr(3)	124.5(4)
C(13)-C(14)-C(19)	125.7(5)	C(23)-C(22)-C(21)	107.5(5)
C(15)-C(14)-Zr(2)	74.6(3)	C(23)-C(22)-C(27)	127.6(6)
C(13)-C(14)-Zr(2)	74.2(3)	C(21)-C(22)-C(27)	124.4(6)
C(19)-C(14)-Zr(2)	124.7(3)	C(23)-C(22)-Zr(3)	73.2(3)
C(14)-C(15)-C(11)	108.8(4)	C(21)-C(22)-Zr(3)	73.9(3)
C(14)-C(15)-C(20)	125.0(5)	C(27)-C(22)-Zr(3)	125.0(4)
C(11)-C(15)-C(20)	125.8(5)	C(24)-C(23)-C(22)	107.7(5)
C(14)-C(15)-Zr(2)	73.3(3)	C(24)-C(23)-C(28)	124.2(5)
C(11)-C(15)-Zr(2)	74.1(3)	C(22)-C(23)-C(28)	127.5(5)
C(20)-C(15)-Zr(2)	125.2(3)	C(24)-C(23)-Zr(3)	74.3(3)
C(11)-C(16)-H(16A)	109.5	C(22)-C(23)-Zr(3)	74.2(3)
C(11)-C(16)-H(16B)	109.5	C(28)-C(23)-Zr(3)	123.9(4)
H(16A)-C(16)-H(16B)	109.5	C(25)-C(24)-C(23)	108.4(5)
C(11)-C(16)-H(16C)	109.5	C(25)-C(24)-C(29)	125.8(6)
H(16A)-C(16)-H(16C)	109.5	C(23)-C(24)-C(29)	125.3(6)
H(16B)-C(16)-H(16C)	109.5	C(25)-C(24)-Zr(3)	74.3(3)
C(12)-C(17)-H(17A)	109.5	C(23)-C(24)-Zr(3)	73.3(3)
C(12)-C(17)-H(17B)	109.5	C(29)-C(24)-Zr(3)	124.8(3)
H(17A)-C(17)-H(17B)	109.5	C(21)-C(25)-C(24)	108.1(5)
C(12)-C(17)-H(17C)	109.5	C(21)-C(25)-C(30)	127.0(7)
H(17A)-C(17)-H(17C)	109.5	C(24)-C(25)-C(30)	124.5(6)
H(17B)-C(17)-H(17C)	109.5	C(21)-C(25)-Zr(3)	73.8(3)

C(24)-C(25)-Zr(3)	73.5(3)	C(34)-C(33)-C(38)	127.3(5)
C(30)-C(25)-Zr(3)	124.3(4)	C(32)-C(33)-Zr(4)	74.1(3)
C(21)-C(26)-H(26A)	109.5	C(34)-C(33)-Zr(4)	74.1(3)
C(21)-C(26)-H(26B)	109.5	C(38)-C(33)-Zr(4)	123.9(3)
H(26A)-C(26)-H(26B)	109.5	C(33)-C(34)-C(35)	108.0(4)
C(21)-C(26)-H(26C)	109.5	C(33)-C(34)-C(39)	127.2(5)
H(26A)-C(26)-H(26C)	109.5	C(35)-C(34)-C(39)	124.4(5)
H(26B)-C(26)-H(26C)	109.5	C(33)-C(34)-Zr(4)	73.4(3)
C(22)-C(27)-H(27A)	109.5	C(35)-C(34)-Zr(4)	72.7(3)
C(22)-C(27)-H(27B)	109.5	C(39)-C(34)-Zr(4)	125.3(3)
H(27A)-C(27)-H(27B)	109.5	C(31)-C(35)-C(34)	108.1(4)
C(22)-C(27)-H(27C)	109.5	C(31)-C(35)-C(40)	126.5(4)
H(27A)-C(27)-H(27C)	109.5	C(34)-C(35)-C(40)	124.6(4)
H(27B)-C(27)-H(27C)	109.5	C(31)-C(35)-Zr(4)	74.8(3)
C(23)-C(28)-H(28A)	109.5	C(34)-C(35)-Zr(4)	74.3(3)
C(23)-C(28)-H(28B)	109.5	C(40)-C(35)-Zr(4)	124.7(3)
H(28A)-C(28)-H(28B)	109.5	C(31)-C(36)-H(36A)	109.5
C(23)-C(28)-H(28C)	109.5	C(31)-C(36)-H(36B)	109.5
H(28A)-C(28)-H(28C)	109.5	H(36A)-C(36)-H(36B)	109.5
H(28B)-C(28)-H(28C)	109.5	C(31)-C(36)-H(36C)	109.5
C(24)-C(29)-H(29A)	109.5	H(36A)-C(36)-H(36C)	109.5
C(24)-C(29)-H(29B)	109.5	H(36B)-C(36)-H(36C)	109.5
H(29A)-C(29)-H(29B)	109.5	C(32)-C(37)-H(37A)	109.5
C(24)-C(29)-H(29C)	109.5	C(32)-C(37)-H(37B)	109.5
H(29A)-C(29)-H(29C)	109.5	H(37A)-C(37)-H(37B)	109.5
H(29B)-C(29)-H(29C)	109.5	C(32)-C(37)-H(37C)	109.5
C(25)-C(30)-H(30A)	109.5	H(37A)-C(37)-H(37C)	109.5
C(25)-C(30)-H(30B)	109.5	H(37B)-C(37)-H(37C)	109.5
H(30A)-C(30)-H(30B)	109.5	C(33)-C(38)-H(38A)	109.5
C(25)-C(30)-H(30C)	109.5	C(33)-C(38)-H(38B)	109.5
H(30A)-C(30)-H(30C)	109.5	H(38A)-C(38)-H(38B)	109.5
H(30B)-C(30)-H(30C)	109.5	C(33)-C(38)-H(38C)	109.5
C(35)-C(31)-C(32)	107.1(4)	H(38A)-C(38)-H(38C)	109.5
C(35)-C(31)-C(36)	125.8(5)	H(38B)-C(38)-H(38C)	109.5
C(32)-C(31)-C(36)	126.5(5)	C(34)-C(39)-H(39A)	109.5
C(35)-C(31)-Zr(4)	72.7(3)	C(34)-C(39)-H(39B)	109.5
C(32)-C(31)-Zr(4)	73.2(3)	H(39A)-C(39)-H(39B)	109.5
C(36)-C(31)-Zr(4)	126.4(3)	C(34)-C(39)-H(39C)	109.5
C(33)-C(32)-C(31)	108.6(4)	H(39A)-C(39)-H(39C)	109.5
C(33)-C(32)-C(37)	125.3(5)	H(39B)-C(39)-H(39C)	109.5
C(31)-C(32)-C(37)	125.8(5)	C(35)-C(40)-H(40A)	109.5
C(33)-C(32)-Zr(4)	73.6(3)	C(35)-C(40)-H(40B)	109.5
C(31)-C(32)-Zr(4)	73.9(3)	H(40A)-C(40)-H(40B)	109.5
C(37)-C(32)-Zr(4)	123.7(3)	C(35)-C(40)-H(40C)	109.5
C(32)-C(33)-C(34)	108.1(4)	H(40A)-C(40)-H(40C)	109.5
C(32)-C(33)-C(38)	124.1(5)	H(40B)-C(40)-H(40C)	109.5

C(47)-C(41)-C(42)	114.7(3)	C(54)-C(48)-C(53)	110.5(7)
C(47)-C(41)-C(46)	125.2(3)	C(54)-C(48)-C(49)	129.5(7)
C(42)-C(41)-C(46)	120.0	C(53)-C(48)-C(49)	120.0
C(41)-C(42)-C(43)	120.0	C(50)-C(49)-C(48)	120.0
C(41)-C(42)-H(42A)	120.0	C(50)-C(49)-H(49A)	120.0
C(43)-C(42)-H(42A)	120.0	C(48)-C(49)-H(49A)	120.0
C(42)-C(43)-C(44)	120.0	C(51)-C(50)-C(49)	120.0
C(42)-C(43)-H(43A)	120.0	C(51)-C(50)-H(50A)	120.0
C(44)-C(43)-H(43A)	120.0	C(49)-C(50)-H(50A)	120.0
C(45)-C(44)-C(43)	120.0	C(52)-C(51)-C(50)	120.0
C(45)-C(44)-H(44A)	120.0	C(52)-C(51)-H(51A)	120.0
C(43)-C(44)-H(44A)	120.0	C(50)-C(51)-H(51A)	120.0
C(44)-C(45)-C(46)	120.0	C(51)-C(52)-C(53)	120.0
C(44)-C(45)-H(45A)	120.0	C(51)-C(52)-H(52A)	120.0
C(46)-C(45)-H(45A)	120.0	C(53)-C(52)-H(52A)	120.0
C(45)-C(46)-C(41)	120.0	C(48)-C(53)-C(52)	120.0
C(45)-C(46)-H(46A)	120.0	C(48)-C(53)-H(53A)	120.0
C(41)-C(46)-H(46A)	120.0	C(52)-C(53)-H(53A)	120.0
C(41)-C(47)-H(47A)	109.5	C(48)-C(54)-H(54A)	109.5
C(41)-C(47)-H(47B)	109.5	C(48)-C(54)-H(54B)	109.5
H(47A)-C(47)-H(47B)	109.5	H(54A)-C(54)-H(54B)	109.5
C(41)-C(47)-H(47C)	109.5	C(48)-C(54)-H(54C)	109.5
H(47A)-C(47)-H(47C)	109.5	H(54A)-C(54)-H(54C)	109.5
H(47B)-C(47)-H(47C)	109.5	H(54B)-C(54)-H(54C)	109.5

Symmetry transformations used to generate equivalent atoms:

	T11	1122	1133	1123	1113	1112
	C	U	0	U	0	0
Zr(1)	31(1)	31(1)	36(1)	-3(1)	-5(1)	-2(1)
Zr(2)	30(1)	30(1)	31(1)	-1(1)	-2(1)	1(1)
Zr(3)	31(1)	30(1)	34(1)	2(1)	-1(1)	1(1)
Zr(4)	30(1)	30(1)	33(1)	1(1)	1(1)	-1(1)
Cl(1)	33(1)	39(1)	47(1)	-7(1)	-7(1)	4(1)
Cl(2)	33(1)	39(1)	44(1)	4(1)	3(1)	4(1)
C(1)	37(3)	34(3)	46(3)	-9(2)	-12(2)	-2(2)
C(2)	41(3)	44(3)	41(3)	-8(2)	-5(2)	-11(2)
C(3)	55(3)	32(3)	58(3)	-5(2)	-31(3)	-2(2)
C(4)	30(3)	51(3)	58(3)	-22(3)	-15(2)	4(2)
C(5)	33(3)	43(3)	47(3)	-9(2)	-5(2)	-10(2)
C(6)	62(4)	42(3)	75(4)	-19(3)	-18(3)	8(3)
C(7)	67(4)	86(5)	58(4)	-20(3)	9(3)	-27(4)
C(8)	112(6)	50(4)	91(5)	3(3)	-63(4)	-1(4)
C(9)	40(3)	76(5)	111(5)	-45(4)	-20(3)	16(3)
C(10)	58(4)	81(5)	67(4)	-6(3)	3(3)	-35(3)
C(11)	58(3)	30(3)	37(3)	-3(2)	-4(2)	3(2)
C(12)	48(3)	42(3)	44(3)	-14(2)	-9(2)	13(2)
C(13)	41(3)	41(3)	35(2)	-10(2)	1(2)	1(2)
C(14)	41(3)	38(3)	33(2)	-8(2)	-5(2)	7(2)
C(15)	46(3)	38(3)	36(3)	-9(2)	0(2)	-4(2)
C(16)	136(6)	35(3)	54(4)	3(3)	-4(4)	0(4)
C(17)	55(4)	75(4)	84(4)	-27(4)	-24(3)	27(3)
C(18)	58(4)	66(4)	65(4)	-10(3)	25(3)	-1(3)
C(19)	70(4)	65(4)	38(3)	-4(3)	-11(3)	13(3)
C(20)	55(3)	70(4)	68(4)	-21(3)	-1(3)	-18(3)
C(21)	48(3)	52(3)	64(4)	26(3)	-10(3)	-10(3)
C(22)	56(3)	53(3)	38(3)	15(2)	14(2)	21(3)
C(23)	51(3)	42(3)	46(3)	15(2)	-12(2)	-5(2)
C(24)	55(3)	48(3)	43(3)	20(3)	14(3)	18(3)
C(25)	85(4)	35(3)	42(3)	6(2)	-9(3)	2(3)
C(26)	57(4)	131(7)	131(7)	75(6)	-27(4)	-35(4)
C(27)	156(7)	80(5)	51(4)	22(3)	42(4)	48(5)
C(28)	103(6)	81(5)	75(4)	22(4)	-45(4)	-12(4)
C(29)	80(5)	106(6)	107(6)	56(5)	37(4)	58(4)
C(30)	263(11)	34(4)	75(5)	-2(3)	-52(6)	2(5)
C(31)	35(3)	39(3)	40(3)	3(2)	4(2)	-7(2)
C(32)	40(3)	44(3)	53(3)	16(2)	14(2)	7(2)
C(33)	52(3)	30(3)	45(3)	2(2)	17(3)	-3(2)
C(34)	46(3)	47(3)	37(3)	7(2)	-1(2)	-9(2)
C(35)	29(2)	33(3)	47(3)	6(2)	2(2)	-2(2)

Table S3. Anisotropic displacement parameters (Å²x 10³) for $[(\mu_2-H)_8(\mu_2-Cl)_2(Cp^*Zr)_4]\cdot 2(C_7H_8).$

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

C(36)	48(3)	66(4)	55(3)	-1(3)	1(3)	-22(3)
C(37)	40(3)	87(5)	95(5)	45(4)	23(3)	25(3)
C(38)	105(5)	51(4)	76(4)	-14(3)	43(4)	-9(4)
C(39)	73(4)	82(5)	42(3)	17(3)	-11(3)	-33(3)
C(40)	53(3)	37(3)	75(4)	12(3)	20(3)	5(2)

The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	У	Z	U(eq)	
H(6A)	2200	11775	7116	89	
H(6B)	1182	11270	7040	89	
H(6C)	1569	11475	7573	89	
H(7A)	1549	13014	6189	105	
H(7B)	2406	12792	6564	105	
H(7C)	2172	13795	6428	105	
H(8A)	-91	15181	6859	127	
H(8B)	-136	14577	6387	127	
H(8C)	889	14974	6564	127	
H(9A)	-982	14337	7862	114	
H(9B)	-1642	13673	7552	114	
H(9C)	-1282	14583	7320	114	
H(10A)	-763	11785	7697	103	
H(10B)	-744	12551	8094	103	
H(10C)	152	11875	8055	103	
H(16A)	2280	18398	8592	112	
H(16B)	1916	17730	8183	112	
H(16C)	3061	17833	8293	112	
H(17A)	362	17080	8510	107	
H(17B)	314	17658	8992	107	
H(17C)	-68	16661	8995	107	
H(18A)	710	16142	9951	94	
H(18B)	1236	15211	9873	94	
H(18C)	377	15515	9517	94	
H(19A)	2926	15225	9957	87	
H(19B)	3481	16133	10064	87	
H(19C)	3921	15454	9679	87	
H(20A)	4629	16478	9076	96	
H(20B)	4361	17419	9300	96	
H(20C)	4334	17278	8728	96	
H(26A)	661	11780	9443	160	
H(26B)	785	11436	8901	160	
H(26C)	484	12439	9001	160	
H(27A)	1792	12879	10144	143	
H(27B)	1158	13395	9749	143	
H(27C)	2158	13813	9946	143	
H(28A)	4694	13499	9489	130	
H(28B)	4510	12799	9911	130	
H(28C)	3895	13697	9898	130	
H(29A)	4593	11463	8593	147	
H(29B)	4939	11513	9144	147	

Table S4. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for $[(\mu_2-H)_8(\mu_2-Cl)_2(Cp^*Zr)_4]\cdot 2(C_7H_8).$

H(29C)	5060	12353	8800	147
H(30A)	2806	10495	8657	186
H(30B)	3063	11156	8226	186
H(30C)	1948	11012	8384	186
H(36A)	5865	16966	7612	85
H(36B)	5719	16273	8041	85
H(36C)	4920	17027	7952	85
H(37A)	6018	14045	7377	111
H(37B)	6173	14753	7798	111
H(37C)	6641	14920	7277	111
H(38A)	4735	13538	6843	116
H(38B)	5233	14112	6426	116
H(38C)	4075	13946	6421	116
H(39A)	3357	15752	6141	99
H(39B)	2537	16032	6524	99
H(39C)	2717	15012	6406	99
H(40A)	2790	17046	7066	83
H(40B)	3813	17532	6975	83
H(40C)	3445	17356	7514	83
H(42A)	1006	15384	11008	128
H(43A)	1684	13957	11021	193
H(44A)	3389	13772	11097	141
H(45A)	4416	15013	11160	148
H(46A)	3739	16439	11147	108
H(47A)	1117	16758	11026	246
H(47B)	2048	17175	10760	246
H(47C)	1972	17207	11336	246
H(49A)	1377	10761	10230	401
H(50A)	459	9455	10149	401
H(51A)	1233	8143	9904	353
H(52A)	2924	8136	9740	306
H(53A)	3842	9441	9820	355
H(54A)	3026	11434	10165	464
H(54B)	3671	10983	9751	464
H(54C)	3861	10738	10305	464

	X	У	Z	U(eq)	
$\overline{\mathrm{Zr}(1)}$	7618(1)	6795(1)	1806(1)	24(1)	
Zr(2)	6900(1)	9474(1)	2319(1)	23(1)	
Zr(3)	7318(1)	7138(1)	3416(1)	25(1)	
Zr(4)	4896(1)	8264(1)	2565(1)	25(1)	
C(1)	8900(12)	4591(10)	1389(6)	48(3)	
C(2)	9691(11)	5262(12)	1224(7)	50(3)	
C(3)	9132(15)	6234(12)	682(7)	61(4)	
C(4)	7973(14)	6163(11)	547(6)	54(3)	
C(5)	7856(11)	5119(11)	979(6)	45(3)	
C(6)	9170(20)	3393(11)	1906(8)	113(7)	
C(7)	10974(15)	4930(20)	1509(11)	160(11)	
C(8)	9740(20)	7120(16)	284(10)	139(10)	
C(9)	7060(20)	7044(16)	4(7)	143(10)	
C(10)	6835(14)	4635(16)	956(11)	123(8)	
C(11)	6041(10)	11881(9)	1981(7)	40(3)	
C(12)	6993(13)	11248(10)	1434(6)	48(3)	
C(13)	8178(11)	10695(10)	1706(7)	47(3)	
C(14)	8004(11)	10908(10)	2439(7)	44(3)	
C(15)	6670(11)	11643(9)	2605(6)	39(3)	
C(16)	4614(14)	12710(12)	1893(10)	99(6)	
C(17)	6710(20)	11358(15)	656(7)	105(7)	
C(18)	9516(14)	10035(13)	1270(10)	102(7)	
C(19)	9120(15)	10500(13)	2927(9)	99(7)	
C(20)	6028(17)	12192(13)	3323(7)	85(5)	
C(21)	9090(11)	5521(12)	4128(6)	47(3)	
C(22)	8755(13)	6751(12)	4388(6)	50(3)	
C(23)	7483(12)	7181(11)	4717(5)	44(3)	
C(24)	7010(12)	6238(12)	4673(5)	45(3)	
C(25)	7990(11)	5240(10)	4313(5)	39(3)	
C(26)	10424(13)	4666(14)	3785(7)	86(5)	
C(27)	9656(17)	7434(17)	4360(9)	110(7)	
C(28)	6706(18)	8442(13)	5094(7)	98(6)	
C(29)	5682(14)	6267(14)	5002(7)	74(4)	
C(30)	7892(15)	3999(12)	4168(7)	73(4)	
C(31)	2578(9)	9784(10)	2762(6)	36(2)	
C(32)	2692(10)	8657(11)	3215(6)	41(3)	
C(33)	3000(11)	7649(10)	2783(7)	45(3)	
C(34)	3031(10)	8118(11)	2047(6)	43(3)	
C(35)	2785(10)	9436(10)	2042(6)	38(3)	
C(36)	2159(11)	11107(10)	3015(7)	52(3)	
C(37)	2453(13)	8617(15)	4030(6)	75(4)	

Table S5. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for [(μ_2 -H)₆(Cp*Zr)₄]

C(38)	3212(14)	6254(13)	3036(9)	81(5)
C(39)	3221(13)	7375(15)	1401(7)	75(4)
C(40)	2686(11)	10343(12)	1381(6)	58(4)
H(1)	7630(80)	8450(80)	1540(40)	30
H(2)	8430(80)	5770(80)	2670(40)	30
H(3)	5760(80)	7460(80)	1710(40)	30
H(4)	7500(80)	8990(80)	3430(40)	30
H(5)	5090(80)	9920(80)	2360(40)	30
H(6)	5290(80)	7240(80)	3680(40)	30

 $U(eq) \mbox{ is defined as one third of } \mbox{ the trace of the orthogonalized } U^{ij} \mbox{ tensor.}$

Zr(1)-C(2)	2.472(11)	C(3)-C(8)	1.521(17)
Zr(1)-C(1)	2.484(10)	C(4)-C(5)	1.401(16)
Zr(1)-C(4)	2.488(10)	C(4)-C(9)	1.516(17)
Zr(1)-C(3)	2.497(10)	C(5)-C(10)	1.485(16)
Zr(1)-C(5)	2.516(10)	C(6)-H(6A)	0.9800
Zr(1)- $Zr(3)$	3.0525(13)	C(6)-H(6B)	0.9800
Zr(1)- $Zr(2)$	3.0603(12)	C(6)-H(6C)	0.9800
Zr(1)- $Zr(4)$	3.0694(13)	C(7)-H(7A)	0.9800
Zr(1)-H(1)	1.90(8)	C(7)-H(7B)	0.9800
Zr(1)-H(2)	1.98(8)	C(7)-H(7C)	0.9800
Zr(1)-H(3)	1.95(8)	C(8)-H(8A)	0.9800
Zr(2)-C(12)	2.487(10)	C(8)-H(8B)	0.9800
Zr(2)-C(14)	2.488(9)	C(8)-H(8C)	0.9800
Zr(2)-C(13)	2.493(10)	C(9)-H(9A)	0.9800
Zr(2)-C(15)	2.498(9)	C(9)-H(9B)	0.9800
Zr(2)-C(11)	2.532(9)	C(9)-H(9C)	0.9800
Zr(2)- $Zr(3)$	3.0737(12)	C(10)-H(10A)	0.9800
Zr(2)- $Zr(4)$	3.0774(12)	C(10)-H(10B)	0.9800
Zr(2)-H(1)	1.87(8)	C(10)-H(10C)	0.9800
Zr(2)-H(4)	2.21(8)	C(11)-C(15)	1.396(15)
Zr(2)-H(5)	1.89(8)	C(11)-C(12)	1.404(16)
Zr(3)-C(23)	2.486(10)	C(11)-C(16)	1.516(16)
Zr(3)-C(25)	2.489(9)	C(12)-C(13)	1.368(16)
Zr(3)-C(22)	2.493(10)	C(12)-C(17)	1.519(16)
Zr(3)-C(24)	2.497(10)	C(13)-C(14)	1.401(16)
Zr(3)-C(21)	2.506(10)	C(13)-C(18)	1.547(16)
Zr(3)- $Zr(4)$	3.0864(13)	C(14)-C(15)	1.402(15)
Zr(3)-H(2)	2.10(8)	C(14)-C(19)	1.545(14)
Zr(3)-H(4)	2.21(8)	C(15)-C(20)	1.515(15)
Zr(3)-H(6)	2.24(8)	C(16)-H(16A)	0.9800
Zr(4)-C(31)	2.478(10)	C(16)-H(16B)	0.9800
Zr(4)-C(35)	2.479(9)	C(16)-H(16C)	0.9800
Zr(4)-C(33)	2.499(10)	C(17)-H(17A)	0.9800
Zr(4)-C(32)	2.510(10)	C(17)-H(17B)	0.9800
Zr(4)-C(34)	2.522(10)	C(17)-H(17C)	0.9800
Zr(4)-H(3)	1.88(8)	C(18)-H(18A)	0.9800
Zr(4)-H(5)	1.98(8)	C(18)-H(18B)	0.9800
Zr(4)-H(6)	2.28(8)	C(18)-H(18C)	0.9800
C(1)-C(5)	1.379(15)	C(19)-H(19A)	0.9800
C(1)-C(2)	1.389(16)	C(19)-H(19B)	0.9800
C(1)-C(6)	1.521(16)	C(19)-H(19C)	0.9800
C(2)-C(3)	1.408(18)	C(20)-H(20A)	0.9800
C(2)-C(7)	1.503(19)	C(20)-H(20B)	0.9800
C(3)-C(4)	1.409(18)	C(20)-H(20C)	0.9800

Table C(D and langths $[\check{A}]$ and analog $[0]$ for $[(u, \mathbf{H})$ (Cr*7	
Table So Bond lengths LA Land angles Γ^* for $\Gamma(D_2 - H)_2 (U D^* Z)$	r)₄]

C(21)-C(25)	1.404(15)	C(31)-C(35)	1.417(14)
C(21)-C(22)	1.423(16)	C(31)-C(32)	1.421(14)
C(21)-C(26)	1.520(16)	C(31)-C(36)	1.498(14)
C(22)-C(23)	1.393(16)	C(32)-C(33)	1.386(15)
C(22)-C(27)	1.516(16)	C(32)-C(37)	1.517(15)
C(23)-C(24)	1.403(15)	C(33)-C(34)	1.422(15)
C(23)-C(28)	1.540(16)	C(33)-C(38)	1.531(15)
C(24)-C(25)	1.383(15)	C(34)-C(35)	1.410(14)
C(24)-C(29)	1.537(17)	C(34)-C(39)	1.507(16)
C(25)-C(30)	1.527(15)	C(35)-C(40)	1.501(14)
C(26)-H(26A)	0.9800	C(36)-H(36A)	0.9800
C(26)-H(26B)	0.9800	C(36)-H(36B)	0.9800
C(26)-H(26C)	0.9800	C(36)-H(36C)	0.9800
C(27)-H(27A)	0.9800	C(37)-H(37A)	0.9800
C(27)-H(27B)	0.9800	C(37)-H(37B)	0.9800
C(27)-H(27C)	0.9800	C(37)-H(37C)	0.9800
C(28)-H(28A)	0.9800	C(38)-H(38A)	0.9800
C(28)-H(28B)	0.9800	C(38)-H(38B)	0.9800
C(28)-H(28C)	0.9800	C(38)-H(38C)	0.9800
C(29)-H(29A)	0.9800	C(39)-H(39A)	0.9800
C(29)-H(29B)	0.9800	C(39)-H(39B)	0.9800
C(29)-H(29C)	0.9800	C(39)-H(39C)	0.9800
C(30)-H(30A)	0.9800	C(40)-H(40A)	0.9800
C(30)-H(30B)	0.9800	C(40)-H(40B)	0.9800
C(30)-H(30C)	0.9800	C(40)-H(40C)	0.9800
C(2)- $Zr(1)$ - $C(1)$	32.6(4)	Zr(3)- $Zr(1)$ - $Zr(2)$	60.37(3)
C(2)- $Zr(1)$ - $C(4)$	54.5(4)	C(2)- $Zr(1)$ - $Zr(4)$	169.2(3)
C(1)- $Zr(1)$ - $C(4)$	53.5(4)	C(1)- $Zr(1)$ - $Zr(4)$	136.6(3)
C(2)- $Zr(1)$ - $C(3)$	32.9(4)	C(4)-Zr(1)-Zr(4)	122.8(3)
C(1)- $Zr(1)$ - $C(3)$	53.7(4)	C(3)-Zr(1)-Zr(4)	150.4(4)
C(4)- $Zr(1)$ - $C(3)$	32.8(4)	C(5)-Zr(1)-Zr(4)	117.2(3)
C(2)- $Zr(1)$ - $C(5)$	54.1(4)	Zr(3)- $Zr(1)$ - $Zr(4)$	60.55(3)
C(1)- $Zr(1)$ - $C(5)$	32.0(4)	$\operatorname{Zr}(2)$ - $\operatorname{Zr}(1)$ - $\operatorname{Zr}(4)$	60.27(3)
C(4)- $Zr(1)$ - $C(5)$	32.5(4)	C(2)- $Zr(1)$ - $H(1)$	105(3)
C(3)- $Zr(1)$ - $C(5)$	54.0(4)	C(1)- $Zr(1)$ - $H(1)$	135(3)
C(2)- $Zr(1)$ - $Zr(3)$	120.5(3)	C(4)-Zr(1)-H(1)	95(2)
C(1)- $Zr(1)$ - $Zr(3)$	118.2(3)	C(3)-Zr(1)-H(1)	82(2)
C(4)-Zr(1)-Zr(3)	171.4(3)	C(5)-Zr(1)-H(1)	127(2)
C(3)- $Zr(1)$ - $Zr(3)$	146.8(4)	Zr(3)-Zr(1)-H(1)	94(2)
C(5)-Zr(1)-Zr(3)	139.3(3)	Zr(2)-Zr(1)-H(1)	35(2)
C(2)-Zr(1)-Zr(2)	130.4(3)	Zr(4)-Zr(1)-H(1)	86(3)
C(1)-Zr(1)-Zr(2)	161.9(3)	C(2)- $Zr(1)$ - $H(2)$	80(2)
C(4)- $Zr(1)$ - $Zr(2)$	128.2(3)	C(1)-Zr(1)-H(2)	76(2)
C(3)-Zr(1)-Zr(2)	116.3(2)	C(4)- $Zr(1)$ - $H(2)$	129(2)
C(5)- $Zr(1)$ - $Zr(2)$	158.6(3)	C(3)- $Zr(1)$ - $H(2)$	113(2)

C(5)- $Zr(1)$ - $H(2)$	104(2)	C(15)- $Zr(2)$ - $H(1)$	135(3)
Zr(3)-Zr(1)-H(2)	43(2)	C(11)- $Zr(2)$ - $H(1)$	114(3)
Zr(2)-Zr(1)-H(2)	97(2)	Zr(1)-Zr(2)-H(1)	36(3)
Zr(4)-Zr(1)-H(2)	97(2)	Zr(3)-Zr(2)-H(1)	94(3)
H(1)-Zr(1)-H(2)	121(3)	Zr(4)-Zr(2)-H(1)	86(3)
C(2)-Zr(1)-H(3)	139(2)	C(12)- $Zr(2)$ - $H(4)$	129(2)
C(1)-Zr(1)-H(3)	114(2)	C(14)-Zr(2)-H(4)	76(2)
C(4)- $Zr(1)$ - $H(3)$	87(2)	C(13)- $Zr(2)$ - $H(4)$	105(2)
C(3)- $Zr(1)$ - $H(3)$	118(2)	C(15)- $Zr(2)$ - $H(4)$	81(2)
C(5)-Zr(1)-H(3)	86(2)	C(11)- $Zr(2)$ - $H(4)$	112(2)
Zr(3)-Zr(1)-H(3)	95(2)	Zr(1)-Zr(2)-H(4)	102(2)
Zr(2)-Zr(1)-H(3)	83(2)	Zr(3)-Zr(2)-H(4)	46(2)
Zr(4)-Zr(1)-H(3)	36(2)	Zr(4)-Zr(2)-H(4)	96(2)
H(1)-Zr(1)-H(3)	91(4)	H(1)-Zr(2)-H(4)	127(3)
H(2)-Zr(1)-H(3)	123(3)	C(12)-Zr(2)-H(5)	98(3)
C(12)- $Zr(2)$ - $C(14)$	53.9(4)	C(14)- $Zr(2)$ - $H(5)$	128(3)
C(12)- $Zr(2)$ - $C(13)$	31.9(4)	C(13)-Zr(2)-H(5)	129(3)
C(14)- $Zr(2)$ - $C(13)$	32.7(4)	C(15)-Zr(2)-H(5)	95(3)
C(12)- $Zr(2)$ - $C(15)$	53.7(4)	C(11)-Zr(2)-H(5)	79(3)
C(14)- $Zr(2)$ - $C(15)$	32.7(4)	Zr(1)-Zr(2)-H(5)	93(3)
C(13)- $Zr(2)$ - $C(15)$	53.6(3)	Zr(3)- $Zr(2)$ -H(5)	93(3)
C(12)- $Zr(2)$ - $C(11)$	32.5(4)	Zr(4)-Zr(2)-H(5)	38(3)
C(14)- $Zr(2)$ - $C(11)$	53.8(3)	H(1)-Zr(2)-H(5)	105(4)
C(13)- $Zr(2)$ - $C(11)$	53.2(4)	H(4)- $Zr(2)$ - $H(5)$	109(3)
C(15)- $Zr(2)$ - $C(11)$	32.2(3)	C(23)- $Zr(3)$ - $C(25)$	53.6(4)
C(12)- $Zr(2)$ - $Zr(1)$	119.6(3)	C(23)- $Zr(3)$ - $C(22)$	32.5(4)
C(14)- $Zr(2)$ - $Zr(1)$	138.1(3)	C(25)- $Zr(3)$ - $C(22)$	53.9(4)
C(13)- $Zr(2)$ - $Zr(1)$	116.5(2)	C(23)- $Zr(3)$ - $C(24)$	32.7(4)
C(15)- $Zr(2)$ - $Zr(1)$	169.9(2)	C(25)- $Zr(3)$ - $C(24)$	32.2(4)
C(11)- $Zr(2)$ - $Zr(1)$	146.1(3)	C(22)- $Zr(3)$ - $C(24)$	54.1(4)
C(12)- $Zr(2)$ - $Zr(3)$	169.6(3)	C(23)- $Zr(3)$ - $C(21)$	54.4(4)
C(14)- $Zr(2)$ - $Zr(3)$	118.7(3)	C(25)- $Zr(3)$ - $C(21)$	32.6(3)
C(13)- $Zr(2)$ - $Zr(3)$	137.8(3)	C(22)- $Zr(3)$ - $C(21)$	33.1(4)
C(15)- $Zr(2)$ - $Zr(3)$	125.2(3)	C(24)- $Zr(3)$ - $C(21)$	54.3(4)
C(11)- $Zr(2)$ - $Zr(3)$	152.2(3)	C(23)- $Zr(3)$ - $Zr(1)$	170.1(3)
$\operatorname{Zr}(1)$ - $\operatorname{Zr}(2)$ - $\operatorname{Zr}(3)$	59.69(3)	C(25)-Zr(3)-Zr(1)	121.3(3)
C(12)- $Zr(2)$ - $Zr(4)$	129.5(3)	C(22)- $Zr(3)$ - $Zr(1)$	137.9(3)
C(14)- $Zr(2)$ - $Zr(4)$	160.7(3)	C(24)- $Zr(3)$ - $Zr(1)$	147.5(3)
C(13)- $Zr(2)$ - $Zr(4)$	159.6(3)	C(21)- $Zr(3)$ - $Zr(1)$	116.4(3)
C(15)- $Zr(2)$ - $Zr(4)$	129.8(3)	C(23)-Zr(3)-Zr(2)	123.6(3)
C(11)- $Zr(2)$ - $Zr(4)$	116.9(2)	C(25)-Zr(3)-Zr(2)	171.3(3)
$\operatorname{Zr}(1)$ - $\operatorname{Zr}(2)$ - $\operatorname{Zr}(4)$	60.01(3)	C(22)-Zr(3)-Zr(2)	118.8(3)
Zr(3)- $Zr(2)$ - $Zr(4)$	60.23(3)	C(24)- $Zr(3)$ - $Zr(2)$	150.1(3)
C(12)- $Zr(2)$ - $H(1)$	84(3)	C(21)-Zr(3)-Zr(2)	138.7(3)
C(14)- $Zr(2)$ - $H(1)$	113(3)	Zr(1)-Zr(3)-Zr(2)	59.94(3)
C(13)- $Zr(2)$ - $H(1)$	84(3)	C(23)- $Zr(3)$ - $Zr(4)$	129.8(3)

C(25)- $Zr(3)$ - $Zr(4)$	128.6(3)	C(32)- $Zr(4)$ - $Zr(1)$	159.2(3)
C(22)- $Zr(3)$ - $Zr(4)$	160.9(3)	C(34)-Zr(4)-Zr(1)	115.8(3)
C(24)- $Zr(3)$ - $Zr(4)$	116.1(3)	C(31)-Zr(4)-Zr(2)	116.3(2)
C(21)- $Zr(3)$ - $Zr(4)$	159.0(3)	C(35)-Zr(4)-Zr(2)	118.7(2)
Zr(1)-Zr(3)-Zr(4)	60.00(3)	C(33)-Zr(4)-Zr(2)	170.7(3)
Zr(2)-Zr(3)-Zr(4)	59.94(3)	C(32)-Zr(4)-Zr(2)	140.1(3)
C(23)- $Zr(3)$ - $H(2)$	131(2)	C(34)-Zr(4)-Zr(2)	144.3(3)
C(25)-Zr(3)-H(2)	84(2)	Zr(1)-Zr(4)-Zr(2)	59.72(3)
C(22)-Zr(3)-H(2)	105(2)	C(31)-Zr(4)-Zr(3)	137.3(2)
C(24)-Zr(3)-H(2)	115(2)	C(35)-Zr(4)-Zr(3)	170.2(3)
C(21)-Zr(3)-H(2)	77(2)	C(33)-Zr(4)-Zr(3)	126.0(3)
Zr(1)-Zr(3)-H(2)	40(2)	C(32)-Zr(4)-Zr(3)	119.6(3)
Zr(2)-Zr(3)-H(2)	94(2)	C(34)-Zr(4)-Zr(3)	153.0(3)
Zr(4)-Zr(3)-H(2)	94(2)	Zr(1)-Zr(4)-Zr(3)	59.45(3)
C(23)- $Zr(3)$ - $H(4)$	79(2)	Zr(2)-Zr(4)-Zr(3)	59.82(3)
C(25)-Zr(3)-H(4)	128(2)	C(31)-Zr(4)-H(3)	127(3)
C(22)- $Zr(3)$ - $H(4)$	76(2)	C(35)-Zr(4)-H(3)	94(3)
C(24)-Zr(3)-H(4)	110(2)	C(33)-Zr(4)-H(3)	102(3)
C(21)-Zr(3)-H(4)	105(2)	C(32)-Zr(4)-H(3)	132(3)
Zr(1)-Zr(3)-H(4)	102(2)	C(34)-Zr(4)-H(3)	80(3)
Zr(2)-Zr(3)-H(4)	46(2)	Zr(1)-Zr(4)-H(3)	37(3)
Zr(4)-Zr(3)-H(4)	96(2)	Zr(2)-Zr(4)-H(3)	84(3)
H(2)-Zr(3)-H(4)	123(3)	Zr(3)-Zr(4)-H(3)	96(3)
C(23)- $Zr(3)$ - $H(6)$	90(2)	C(31)- $Zr(4)$ - $H(5)$	81(2)
C(25)-Zr(3)-H(6)	86(2)	C(35)-Zr(4)-H(5)	85(2)
C(22)-Zr(3)-H(6)	121(2)	C(33)-Zr(4)-H(5)	135(2)
C(24)-Zr(3)-H(6)	69(2)	C(32)-Zr(4)-H(5)	110(2)
C(21)-Zr(3)-H(6)	118(2)	C(34)-Zr(4)-H(5)	116(2)
Zr(1)-Zr(3)-H(6)	99(2)	Zr(1)-Zr(4)-H(5)	91(2)
Zr(2)-Zr(3)-H(6)	102(2)	Zr(2)-Zr(4)-H(5)	36(2)
Zr(4)-Zr(3)-H(6)	48(2)	Zr(3)-Zr(4)-H(5)	91(2)
H(2)-Zr(3)-H(6)	112(3)	H(3)-Zr(4)-H(5)	100(3)
H(4)-Zr(3)-H(6)	115(3)	C(31)-Zr(4)-H(6)	102(2)
C(31)- $Zr(4)$ - $C(35)$	33.2(3)	C(35)-Zr(4)-H(6)	129(2)
C(31)- $Zr(4)$ - $C(33)$	54.4(3)	C(33)-Zr(4)-H(6)	82(2)
C(35)- $Zr(4)$ - $C(33)$	54.2(4)	C(32)- $Zr(4)$ - $H(6)$	75(2)
C(31)- $Zr(4)$ - $C(32)$	33.1(3)	C(34)- $Zr(4)$ - $H(6)$	114(2)
C(35)-Zr(4)-C(32)	54.4(4)	Zr(1)-Zr(4)-H(6)	97(2)
C(33)- $Zr(4)$ - $C(32)$	32.1(3)	Zr(2)-Zr(4)-H(6)	101(2)
C(31)- $Zr(4)$ - $C(34)$	54.8(3)	Zr(3)-Zr(4)-H(6)	46(2)
C(35)- $Zr(4)$ - $C(34)$	32.7(3)	H(3)-Zr(4)-H(6)	123(3)
C(33)- $Zr(4)$ - $C(34)$	32.9(4)	H(5)-Zr(4)-H(6)	118(3)
C(32)-Zr(4)-C(34)	54.1(4)	C(5)-C(1)-C(2)	110.0(10)
C(31)- $Zr(4)$ - $Zr(1)$	160.8(2)	C(5)-C(1)-C(6)	124.2(13)
C(35)- $Zr(4)$ - $Zr(1)$	129.3(3)	C(2)-C(1)-C(6)	125.7(13)
C(33)- $Zr(4)$ - $Zr(1)$	128.9(3)	C(5)-C(1)-Zr(1)	75.3(6)

C(2)-C(1)-Zr(1)	73.2(6)	H(9A)-C(9)-H(9B)	109.5
C(6)-C(1)-Zr(1)	121.3(8)	C(4)-C(9)-H(9C)	109.5
C(1)-C(2)-C(3)	107.0(10)	H(9A)-C(9)-H(9C)	109.5
C(1)-C(2)-C(7)	126.6(16)	H(9B)-C(9)-H(9C)	109.5
C(3)-C(2)-C(7)	126.1(15)	C(5)-C(10)-H(10A)	109.5
C(1)-C(2)-Zr(1)	74.2(6)	C(5)-C(10)-H(10B)	109.5
C(3)-C(2)-Zr(1)	74.5(6)	H(10A)-C(10)-H(10B)	109.5
C(7)-C(2)-Zr(1)	121.8(8)	C(5)-C(10)-H(10C)	109.5
C(2)-C(3)-C(4)	107.5(9)	H(10A)-C(10)-H(10C)	109.5
C(2)-C(3)-C(8)	125.3(16)	H(10B)-C(10)-H(10C)	109.5
C(4)-C(3)-C(8)	127.1(16)	C(15)-C(11)-C(12)	107.0(9)
C(2)-C(3)-Zr(1)	72.6(6)	C(15)-C(11)-C(16)	127.1(12)
C(4)-C(3)-Zr(1)	73.2(6)	C(12)-C(11)-C(16)	125.8(12)
C(8)-C(3)-Zr(1)	123.1(8)	C(15)-C(11)-Zr(2)	72.6(5)
C(5)-C(4)-C(3)	108.1(10)	C(12)-C(11)-Zr(2)	72.0(6)
C(5)-C(4)-C(9)	127.0(15)	C(16)-C(11)-Zr(2)	122.7(7)
C(3)-C(4)-C(9)	124.8(15)	C(13)-C(12)-C(11)	108.6(10)
C(5)-C(4)-Zr(1)	74.9(6)	C(13)-C(12)-C(17)	128.0(14)
C(3)-C(4)-Zr(1)	73.9(6)	C(11)-C(12)-C(17)	123.0(13)
C(9)-C(4)-Zr(1)	119.1(8)	C(13)-C(12)-Zr(2)	74.3(6)
C(1)-C(5)-C(4)	107.3(10)	C(11)-C(12)-Zr(2)	75.5(6)
C(1)-C(5)-C(10)	127.1(13)	C(17)-C(12)-Zr(2)	122.8(8)
C(4)-C(5)-C(10)	125.5(14)	C(12)-C(13)-C(14)	109.0(10)
C(1)-C(5)-Zr(1)	72.7(6)	C(12)-C(13)-C(18)	126.0(13)
C(4)-C(5)-Zr(1)	72.6(6)	C(14)-C(13)-C(18)	124.8(13)
C(10)-C(5)-Zr(1)	123.1(8)	C(12)-C(13)-Zr(2)	73.8(6)
C(1)-C(6)-H(6A)	109.5	C(14)-C(13)-Zr(2)	73.4(6)
C(1)-C(6)-H(6B)	109.5	C(18)-C(13)-Zr(2)	122.7(7)
H(6A)-C(6)-H(6B)	109.5	C(13)-C(14)-C(15)	106.7(10)
C(1)-C(6)-H(6C)	109.5	C(13)-C(14)-C(19)	124.7(13)
H(6A)-C(6)-H(6C)	109.5	C(15)-C(14)-C(19)	128.3(13)
H(6B)-C(6)-H(6C)	109.5	C(13)-C(14)-Zr(2)	73.9(6)
C(2)-C(7)-H(7A)	109.5	C(15)-C(14)-Zr(2)	74.1(5)
C(2)-C(7)-H(7B)	109.5	C(19)-C(14)-Zr(2)	121.8(7)
H(7A)-C(7)-H(7B)	109.5	C(11)-C(15)-C(14)	108.6(9)
C(2)-C(7)-H(7C)	109.5	C(11)-C(15)-C(20)	125.3(12)
H(7A)-C(7)-H(7C)	109.5	C(14)-C(15)-C(20)	126.0(12)
H(7B)-C(7)-H(7C)	109.5	C(11)-C(15)-Zr(2)	75.2(6)
C(3)-C(8)-H(8A)	109.5	C(14)-C(15)-Zr(2)	73.3(5)
C(3)-C(8)-H(8B)	109.5	C(20)-C(15)-Zr(2)	121.7(7)
H(8A)-C(8)-H(8B)	109.5	C(11)-C(16)-H(16A)	109.5
C(3)-C(8)-H(8C)	109.5	C(11)-C(16)-H(16B)	109.5
H(8A)-C(8)-H(8C)	109.5	H(16A)-C(16)-H(16B)	109.5
H(8B)-C(8)-H(8C)	109.5	C(11)-C(16)-H(16C)	109.5
C(4)-C(9)-H(9A)	109.5	H(16A)-C(16)-H(16C)	109.5
C(4)-C(9)-H(9B)	109.5	H(16B)-C(16)-H(16C)	109.5

C(12)-C(17)-H(17A)	109.5	C(23)-C(24)-Zr(3)	73.2(6)
С(12)-С(17)-Н(17В)	109.5	C(29)-C(24)-Zr(3)	121.5(8)
H(17A)-C(17)-H(17B)	109.5	C(24)-C(25)-C(21)	110.0(10)
C(12)-C(17)-H(17C)	109.5	C(24)-C(25)-C(30)	124.4(11)
H(17A)-C(17)-H(17C)	109.5	C(21)-C(25)-C(30)	125.6(11)
H(17B)-C(17)-H(17C)	109.5	C(24)-C(25)-Zr(3)	74.2(6)
C(13)-C(18)-H(18A)	109.5	C(21)-C(25)-Zr(3)	74.3(6)
C(13)-C(18)-H(18B)	109.5	C(30)-C(25)-Zr(3)	120.0(7)
H(18A)-C(18)-H(18B)	109.5	C(21)-C(26)-H(26A)	109.5
C(13)-C(18)-H(18C)	109.5	C(21)-C(26)-H(26B)	109.5
H(18A)-C(18)-H(18C)	109.5	H(26A)-C(26)-H(26B)	109.5
H(18B)-C(18)-H(18C)	109.5	C(21)-C(26)-H(26C)	109.5
C(14)-C(19)-H(19A)	109.5	H(26A)-C(26)-H(26C)	109.5
C(14)-C(19)-H(19B)	109.5	H(26B)-C(26)-H(26C)	109.5
H(19A)-C(19)-H(19B)	109.5	C(22)-C(27)-H(27A)	109.5
C(14)-C(19)-H(19C)	109.5	C(22)-C(27)-H(27B)	109.5
H(19A)-C(19)-H(19C)	109.5	H(27A)-C(27)-H(27B)	109.5
H(19B)-C(19)-H(19C)	109.5	C(22)-C(27)-H(27C)	109.5
C(15)-C(20)-H(20A)	109.5	H(27A)-C(27)-H(27C)	109.5
C(15)-C(20)-H(20B)	109.5	H(27B)-C(27)-H(27C)	109.5
H(20A)-C(20)-H(20B)	109.5	C(23)-C(28)-H(28A)	109.5
C(15)-C(20)-H(20C)	109.5	C(23)-C(28)-H(28B)	109.5
H(20A)-C(20)-H(20C)	109.5	H(28A)-C(28)-H(28B)	109.5
H(20B)-C(20)-H(20C)	109.5	C(23)-C(28)-H(28C)	109.5
C(25)-C(21)-C(22)	106.0(10)	H(28A)-C(28)-H(28C)	109.5
C(25)-C(21)-C(26)	128.4(12)	H(28B)-C(28)-H(28C)	109.5
C(22)-C(21)-C(26)	125.4(12)	C(24)-C(29)-H(29A)	109.5
C(25)-C(21)-Zr(3)	73.1(6)	C(24)-C(29)-H(29B)	109.5
C(22)-C(21)-Zr(3)	73.0(6)	H(29A)-C(29)-H(29B)	109.5
C(26)-C(21)-Zr(3)	123.1(7)	C(24)-C(29)-H(29C)	109.5
C(23)-C(22)-C(21)	108.2(10)	H(29A)-C(29)-H(29C)	109.5
C(23)-C(22)-C(27)	125.7(13)	H(29B)-C(29)-H(29C)	109.5
C(21)-C(22)-C(27)	125.9(14)	C(25)-C(30)-H(30A)	109.5
C(23)-C(22)-Zr(3)	73.5(6)	C(25)-C(30)-H(30B)	109.5
C(21)-C(22)-Zr(3)	74.0(6)	H(30A)-C(30)-H(30B)	109.5
C(27)-C(22)-Zr(3)	121.9(8)	C(25)-C(30)-H(30C)	109.5
C(22)-C(23)-C(24)	108.5(10)	H(30A)-C(30)-H(30C)	109.5
C(22)-C(23)-C(28)	127.4(13)	H(30B)-C(30)-H(30C)	109.5
C(24)-C(23)-C(28)	124.1(12)	C(35)-C(31)-C(32)	106.8(9)
C(22)-C(23)-Zr(3)	74.0(6)	C(35)-C(31)-C(36)	127.6(10)
C(24)-C(23)-Zr(3)	74.1(6)	C(32)-C(31)-C(36)	125.2(10)
C(28)-C(23)-Zr(3)	119.6(8)	C(35)-C(31)-Zr(4)	73.4(6)
C(25)-C(24)-C(23)	107.3(10)	C(32)-C(31)-Zr(4)	74.7(6)
C(25)-C(24)-C(29)	126.1(11)	C(36)-C(31)-Zr(4)	122.9(7)
C(23)-C(24)-C(29)	126.5(11)	C(33)-C(32)-C(31)	108.3(10)
C(25)-C(24)-Zr(3)	73.6(6)	C(33)-C(32)-C(37)	127.1(11)
			. ,

C(31)-C(32)-C(37)	124.5(11)	H(36A)-C(36)-H(36C)	109.5
C(33)-C(32)-Zr(4)	73.5(6)	H(36B)-C(36)-H(36C)	109.5
C(31)-C(32)-Zr(4)	72.2(6)	C(32)-C(37)-H(37A)	109.5
C(37)-C(32)-Zr(4)	122.2(8)	C(32)-C(37)-H(37B)	109.5
C(32)-C(33)-C(34)	109.3(9)	H(37A)-C(37)-H(37B)	109.5
C(32)-C(33)-C(38)	126.8(12)	C(32)-C(37)-H(37C)	109.5
C(34)-C(33)-C(38)	123.9(11)	H(37A)-C(37)-H(37C)	109.5
C(32)-C(33)-Zr(4)	74.4(6)	H(37B)-C(37)-H(37C)	109.5
C(34)-C(33)-Zr(4)	74.4(6)	C(33)-C(38)-H(38A)	109.5
C(38)-C(33)-Zr(4)	119.9(8)	C(33)-C(38)-H(38B)	109.5
C(35)-C(34)-C(33)	106.4(9)	H(38A)-C(38)-H(38B)	109.5
C(35)-C(34)-C(39)	126.6(11)	C(33)-C(38)-H(38C)	109.5
C(33)-C(34)-C(39)	126.9(11)	H(38A)-C(38)-H(38C)	109.5
C(35)-C(34)-Zr(4)	72.0(5)	H(38B)-C(38)-H(38C)	109.5
C(33)-C(34)-Zr(4)	72.7(6)	C(34)-C(39)-H(39A)	109.5
C(39)-C(34)-Zr(4)	122.8(8)	C(34)-C(39)-H(39B)	109.5
C(34)-C(35)-C(31)	109.1(9)	H(39A)-C(39)-H(39B)	109.5
C(34)-C(35)-C(40)	125.4(11)	C(34)-C(39)-H(39C)	109.5
C(31)-C(35)-C(40)	125.4(10)	H(39A)-C(39)-H(39C)	109.5
C(34)-C(35)-Zr(4)	75.3(6)	H(39B)-C(39)-H(39C)	109.5
C(31)-C(35)-Zr(4)	73.3(6)	C(35)-C(40)-H(40A)	109.5
C(40)-C(35)-Zr(4)	120.2(7)	C(35)-C(40)-H(40B)	109.5
C(31)-C(36)-H(36A)	109.5	H(40A)-C(40)-H(40B)	109.5
C(31)-C(36)-H(36B)	109.5	C(35)-C(40)-H(40C)	109.5
H(36A)-C(36)-H(36B)	109.5	H(40A)-C(40)-H(40C)	109.5
C(31)-C(36)-H(36C)	109.5	H(40B)-C(40)-H(40C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U ³³	U ²³	U ¹³	U12
$\overline{\mathrm{Zr}(1)}$	28(1)	18(1)	25(1)	0(1)	-3(1)	-10(1)
Zr(2)	23(1)	19(1)	30(1)	0(1)	-5(1)	-11(1)
Zr(3)	26(1)	27(1)	24(1)	2(1)	-4(1)	-13(1)
Zr(4)	23(1)	25(1)	29(1)	3(1)	-6(1)	-12(1)
C(1)	51(7)	21(6)	48(7)	-7(5)	1(6)	7(5)
C(2)	30(6)	59(8)	60(8)	-27(7)	10(6)	-18(6)
C(3)	99(11)	48(8)	51(8)	-32(6)	52(8)	-56(8)
C(4)	82(10)	41(7)	21(6)	-4(5)	-19(6)	-5(7)
C(5)	41(7)	42(7)	62(8)	-22(6)	0(6)	-22(6)
C(6)	210(20)	16(6)	62(10)	-5(6)	11(11)	-3(9)
C(7)	53(10)	250(30)	170(20)	-170(20)	15(12)	-12(13)
C(8)	200(20)	105(14)	137(16)	-84(12)	128(16)	-114(15)
C(9)	220(20)	86(13)	38(9)	-16(8)	-50(12)	31(14)
C(10)	61(10)	122(15)	220(20)	-138(15)	56(12)	-60(10)
C(11)	28(6)	20(5)	77(9)	5(5)	-22(6)	-11(5)
C(12)	80(9)	31(6)	42(7)	12(5)	-13(7)	-33(7)
C(13)	45(7)	35(6)	66(8)	-17(6)	26(6)	-28(6)
C(14)	44(7)	31(6)	77(9)	13(6)	-28(6)	-32(5)
C(15)	58(7)	24(5)	42(6)	-16(5)	12(6)	-25(5)
C(16)	70(10)	38(8)	191(19)	34(10)	-61(12)	-20(7)
C(17)	230(20)	91(12)	53(9)	36(8)	-65(11)	-113(14)
C(18)	86(11)	54(9)	170(17)	-56(10)	78(11)	-47(9)
C(19)	115(13)	71(10)	158(16)	57(10)	-119(12)	-70(10)
C(20)	144(15)	71(10)	59(9)	-30(8)	33(9)	-68(11)
C(21)	44(7)	58(8)	31(6)	15(5)	-13(5)	-14(6)
C(22)	71(9)	64(8)	36(7)	19(6)	-34(6)	-47(7)
C(23)	59(8)	44(7)	20(5)	-8(5)	-3(5)	-11(6)
C(24)	66(8)	64(8)	16(5)	7(5)	-5(5)	-40(7)
C(25)	58(7)	33(6)	32(6)	13(5)	-11(5)	-27(6)
C(26)	63(10)	88(11)	60(9)	21(8)	-3(8)	8(8)
C(27)	135(15)	158(17)	103(13)	64(12)	-77(12)	-125(15)
C(28)	184(19)	62(10)	51(9)	-15(7)	-37(10)	-41(11)
C(29)	92(11)	85(11)	44(8)	13(7)	-4(8)	-41(9)
C(30)	112(12)	44(8)	71(10)	13(7)	-31(9)	-37(8)
C(31)	25(5)	44(6)	41(6)	-12(5)	-1(5)	-14(5)
C(32)	34(6)	47(7)	50(7)	2(5)	3(5)	-26(5)
C(33)	40(7)	37(6)	69(8)	-4(6)	9(6)	-30(6)
C(34)	34(6)	58(8)	50(7)	-10(6)	-10(5)	-30(6)
C(35)	27(6)	42(6)	47(7)	11(5)	-21(5)	-14(5)
C(36)	33(6)	37(7)	87(10)	-21(6)	-4(6)	-10(5)
C(37)	67(9)	119(13)	43(8)	-15(8)	28(7)	-51(9)
C(38)	67(10)	56(9)	123(14)	11(9)	4(9)	-36(8)

Table S7. Anisotropic displacement parameters (Å²x 10³) for [(μ_2 -H)₆(Cp*Zr)₄]

C(39)	49(8)	109(12)	69(10)	-20(9)	-17(7)	-28(8)
C(40)	47(7)	76(9)	48(7)	23(6)	-31(6)	-20(7)

The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	у	Z	U(eq)	
H(6A)	8356	3308	2077	170	
H(6B)	9573	3473	2318	170	
H(6C)	9771	2626	1657	170	
H(7A)	10996	4460	1983	240	
H(7B)	11080	5727	1553	240	
H(7C)	11684	4387	1177	240	
H(8A)	10120	6821	-196	209	
H(8B)	10425	7107	555	209	
H(8C)	9069	8004	237	209	
H(9A)	7555	7355	-384	214	
H(9B)	6380	7782	242	214	
H(9C)	6660	6564	-199	214	
H(10Å)	6578	4360	1445	184	
H(10B)	7178	3900	654	184	
H(10C)	6074	5327	753	184	
H(16A)	4501	13597	1732	148	
H(16B)	4096	12708	2355	148	
H(16C)	4325	12359	1534	148	
H(17A)	7315	10575	423	158	
H(17B)	6819	12113	400	158	
H(17C)	5813	11456	643	158	
H(18A)	9401	9688	845	153	
H(18B)	10103	9329	1572	153	
H(18C)	9890	10670	1117	153	
H(19A)	9511	11131	2848	149	
H(19B)	9784	9645	2811	149	
H(19C)	8772	10466	3433	149	
H(20A)	5954	13080	3314	128	
H(20B)	6556	11660	3708	128	
H(20C)	5157	12190	3410	128	
H(26A)	10952	4088	4159	130	
H(26B)	10857	5208	3537	130	
H(26C)	10323	4150	3436	130	
H(27A)	9147	8328	4486	165	
H(27B)	10094	7431	3872	165	
H(27C)	10308	6984	4703	165	
H(28A)	6726	8258	5617	147	
H(28B)	5802	8811	4976	147	
H(28C)	7097	9061	4931	147	
H(29A)	5344	5903	4675	110	
H(29B)	5071	7162	5077	110	

Table S8. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for $[(\mu_2-H)_6(Cp^*Zr)_4]$.

H(29C)	5785	5753	5465	110
H(30A)	7864	3489	4625	110
H(30B)	8652	3494	3850	110
H(30C)	7096	4216	3937	110
H(36A)	1215	11477	3146	79
H(36B)	2378	11661	2628	79
H(36C)	2608	11047	3436	79
H(37A)	2770	7715	4228	112
H(37B)	1516	9057	4172	112
H(37C)	2916	9052	4217	112
H(38A)	3448	6068	3533	122
H(38B)	3917	5660	2723	122
H(38C)	2409	6140	3015	122
H(39A)	3655	6446	1532	112
H(39B)	3760	7626	1012	112
H(39C)	2371	7569	1237	112
H(40A)	3473	9976	1049	88
H(40B)	2600	11178	1518	88
H(40C)	1922	10466	1145	88

	bond length(Å)	bond order
1		
$\operatorname{Zr}(1)$ - $\operatorname{Zr}(2)$	3.55118	0.246
$\operatorname{Zr}(1)$ - $\operatorname{Zr}(3)$	3.05411	0.647
Zr(1)- $Zr(4)$	3.05384	0.685
Zr(2)- $Zr(3)$	3.05812	0.654
Zr(2)- $Zr(4)$	3.05120	0.649
Zr(3)- $Zr(4)$	3.56439	0.263
2		
Zr(1)- $Zr(2)$	3.06030	0.781
Zr(1)- $Zr(3)$	3.05254	0.980
Zr(1)- $Zr(4)$	3.06946	0.784
Zr(2)- $Zr(3)$	3.07379	0.745
Zr(2)- $Zr(4)$	3.07741	0.925
Zr(3)- $Zr(4)$	3.08625	0.724

Table S9. Wiberg bond indices (bond order) obtained by B3LYP with basis LanL2DZ for Zr, and cc-pVDZ for Cl, C, and H.

