Electronic Supplementary Information

Synthesis, crystal structure and magnetism of new salicylamidoxime-based hexanuclear manganese(III) single-molecule magnets[†]

José Martínez-Lillo,^a Adrian-Raul Tomsa,^{‡a} Yanling Li,^a Lise-Marie Chamoreau,^a Eduard Cremades,^b Eliseo Ruiz,^b Anne-Laure Barra,^c Anna Proust,^{a,d} Michel Verdaguer*^a and Pierre Gouzerh*^a

^a Institut Parisien de Chimie Moléculaire, UMR CNRS 7201, UPMC Univ Paris 06, Case courrier 42, 4
 Place Jussieu, 75252 Paris Cedex 05, France. E-mail: <u>michel.verdaguer@upmc.fr</u>, pierre.gouzerh@upmc.fr
 ^b Department of Inorganic Chemistry, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain
 ^c LNCMI-CNRS B.P. 146, 38042 Grenoble Cedex 9, France
 ^d Institut Universitaire de France, 103 Boulevard Saint Michel, 75003 Paris, France

1. Crystal data: Table S1	2
2. Magnetic data: Figures S1-S33	3-11
3. High field EPR study of 2': Figures S34-36	12-14

1. Crystal data

	<i>a /</i> Å	<i>b</i> / Å	<i>c</i> / Å	α / °	β/°	γ / °	<i>V</i> / Å ³	Space
								group
9	12.321(1)	13.722(1)	32.529(4)	101.553(7)	89.916(9)	111.921(7)	4982.4(8)	$P(-1)^{a}$
10	10.7716(19)	13.562(2)	13.6380(8)	81.856(7)	85.189(7)	66.720(12)	1810.7(5)	P(-1)
11	11.6917(17)	13.2207(11)	17.404(2)	82.892(9)	76.7521(11)	81.328(9)	2577.5(6)	<i>P</i> (-1)
12	19.652(9)	31.131(4)	36.125(6)	90	92.27(2)	90	22084(7)	<i>P</i> 2 ₁ /n
13	12.6802(12)	12.7372(15)	13.4047(11)	65.120(7)	70.487(7)	63.767(3)	1732.4(3)	<i>P</i> 1

2

Table S1. Unit cell parameters for compounds 9-13

^a Two independent molecules in the unit cell.

2. Magnetic data

Magnetic data for compounds 1 and 2 have been reported previously (A.-R. Tomsa et al., Chem. Commun., 2010, 46, 5106-5108. DOI: 10.1039/c0cc00458e.

2.1. Magnetic data for [Mn₆(µ₃-O)₂(PhCO₂)₂(H₂N-saoH₂)₆(EtOH)₆]·EtOH]·H₂O (2'')

 $\chi_{\rm M}T$ vs T for 2" (see text, Fig. 4)

Fig. S1 Magnetization vs field hysteresis loop for 2" at 2 K

Fig. S3 Out-of-phase χ_M " *ac* susceptibility for **2**"

Fig. S2 Magnetization vs H/T for 2"

Fig. S4 Out-of-phase vs in-phase ac susceptibility for 2"

Fig. S5 Arrhenius plots for the two relaxation processes of 2".

4

2.2. Magnetic data for [Mn₆O₂(PhCO₂)₂(H₂N Sample introduction in the SQUID at 200 K

sao)6(EtOH)6]·4EtOH (3')

Fig. S7 Out-of-phase χ_M " ac susceptibility and Arrhenius plot for 3'

2.3. Magnetic data for [Mn₆(µ₃-O)₂(PhCO₂)₂(H₂N- sao)₆(*i*PrOH)₄(EtOH)₂]•4*i*PrOH (4)

Fig. S10 $\chi_{\rm M}T$ vs T for 4 (o: introduction at 200 K; Δ : introduction at 300 K)

Fig. S11 Magnetization vs field loops for 4 at 2 K

Fig. S12 Out-of-phase ac susceptibility and Arrhenius plots for 4

Fig. S13 Out-of-phase vs in-phase ac susceptibility for 4

Fig. S14 Magnetization vs H/T for 4

2.4. Magnetic data for [Mn₆O₂(*t*BuCO₂)₂(H₂N-sao)₆(EtOH)₆]·5EtOH (5)

Fig. S15 $\chi_M T vs T$ for **5** (o: introduction at 200 K; Δ : introduction at 300 K)

Fig. S16 Magnetization vs field loops for 5 at 2 K

Fig. S18 Arrhenius plots for 5

Fig. S23 Out-of-phase vs in-phase ac susceptibility for 6

Fig. S22 Out-of-phase ac susceptibility for 6

2.6. Magnetic data for $[Mn_6(\mu_3-O)_2(H_2N-sao)_6(MeOH)_8]Cl_2 \cdot 9MeOH (7)$ Sample introduction at 200 K

Fig. S27 Out-of-phase *ac* susceptibility for 7

Fig. S28 Out-of-phase vs in-phase ac susceptibility for 7

2.7 Magnetic data for $[Mn_6(\mu_3-O)_2Cl_2(H_2N-sao)_6(EtOH)_4(H_2O)_2]$ 5 EtOH (8)

Fig. S32 Out-of-phase *ac* susceptibility and Arrhenius plot for **8**

Fig. S33 Out-of-phase vs in-phase ac susceptibility for 8

Fig. S34 Experimental (top) and calculated spectra for an S = 12 ground state (bottom) of **2'** at 230 GHz and T = 5, 10 et 20 K.

Fig. S35 Experimental (top) and calculated spectra for an S = 12 ground state (bottom) of **2**' at 345 GHz and T = 5, 10 et 20 K.

24-09-2011

Fig. S36 Experimental (top) and calculated spectra for an S = 12 ground state (bottom) of **2'** at 380 GHz and T = 5, 10 et 20 K.