Chemistry of Transition Metal Carbene Complexes ⁷: Nucleophilic Substitution Reactions of Cyanamide Anion to Fischer Carbene Complexes: Kinetics and Computational Studies

Sumana Gangopadhyay, Tarun Mistri, Malay Dolai, Rabiul Alam and Mahammad Ali

Sl no.	$[N \equiv C-NH_2]_t/M$	[KOH]/M	[N≡C-NH ₂]/M	[N≡C-NH¯]/M	[N≡C-NH ⁻]/[N≡C- NH ₂]/	ρH _{obs}
1	0.10	0.01	0.09	0.01	0.11	10.41
2	0.10	0.02	0.08	0.02	0.25	10.77
3	0.10	0.03	0.07	0.03	0.43	11.00
4	0.10	0.04	0.06	0.04	0.67	11.20
5	0.10	0.05	0.05	0.05	1.00	11.37
6	0.10	0.06	0.04	0.06	1.50	11.55
7	0.10	0.07	0.03	0.07	2.33	11.74
8	0.10	0.08	0.02	0.08	4.00	11.97
9	0.10	0.09	0.01	0.09	9.00	12.32

Table S1. Details of solution preparation and observed pH values.

Figure S1(a). Plot of pH_{obs} vs. log{[N=C-NH⁻]/[N=C-NH₂]

Synthesis of Cr-NHCN-OMe. As a representative one we have prepared Cr-NHCN-OMe as follows: 0.171 g (0.5 mmol) of Cr-OMe-OMe was dissolved in 20 mL acetonitrile in a round bottom flak under Ar atmosphere. To this solution 2 mmol of N=C-NHK in 15 mL acetonitrile was added; the latter was prepared by reacting cyanamide with one equivalent of KOH dissolved in a minimum volume of water. The mixture was allowed to react for one hour whereupon the solvent was removed under high vacuum. The oily product was dissolved in a minimum volume of 50% MeCN-50% CH₂Cl₂ (v/v) and charged on a silicagel column prepared with the same solvent mixture. The yellow band was collected and dried under high vacuum.¹H NMR (Bruker,500 MHz) δ (CDCl₃): 3.66 (CH₃O), 4.1 (NH), 7.02 -7.70 (C₆H₄). ES-MS⁺: (352)

Figure S1(b). ¹H NMR spectrum of Cr-NHCN-OMe in CDCl₃ (Bruker 500 MHz).

Figure S1(c). ESI-MS⁺ of Cr-NHCN-OMe. (i) simulated spectra, (ii) Experimental one

Figure S1(d). ¹³C-NMR spectrum of Cr-NHCN-OMe in CDCl₃

Table S2(a). Summary of pseudo-first-order rate coinstants (k_{obs} , s⁻¹) for the reaction between **Cr-SMe-Z** (Z = p-CF₃, p-CI and m-CI) as a function of pH in 50% H₂O-50% MeCN. Conditions are: [C] = 5.0×10^{-5} M, [H₂N-CN]_t = 0.20 M, T= 25 °C.

Ha	[H+1/M	Kobs(Cr-SMe-	Kobs(Cr-SMe-m-	Kobs(Cr-SMe-p-Cl)	Kobs(Cr-SMe-p-	Kobs(Cr-SMe-p-	Kobs(Cr-SMe-p-
I.		CF ₃)	CI)		F)	Me)	OMe)
10.66	2.19e-11	0.41	0.24	0.23	0.17	0.07	0.07
11.05	8.91e-012	0.98	0.52	0.52	0.33	0.15	0.15
11.34	4.57e-012	1.75	0.74	0.64	0.52	0.22	0.17
11.56	2.75E-12	2.15	1.11	1.23	0.72	0.29	0.23
11.76	1.74e-12	3.10	1.73	1.66	1.06	0.36	0.30
11.96	1.10E-12	3.69	2.09	2.20	1.32	0.42	0.33
12.14	7.24E-12	4.23	2.45	2.54	1.80	0.49	0.45
12.46	3.47e-13	4.50	3.45	3.11	2.50	0.56	0.47
12.77	1.70e-013	4.90	3.95	3.65	2.90	0.63	0.52
$k_1/M^{-1}s^{-1} \rightarrow$		26.8±0.70	23.48±0.67	20.8±0.56	18.20±0.70	3.29±0.07	2.27±0.14
$K_{a}^{NH} \rightarrow$		(2.19±0.07)x10 ⁻¹²	(0.895±0.07)x10 ⁻	(1.26±0.08)x10 ⁻¹²	(0.70±0.05)x10 ⁻¹²	(2.18±0.14)x10 ⁻¹²	(2.12±0.34)x10 ⁻¹²

Table S2(b). Summar of pseudo-first-order rate coinstants for the reaction between **M-SMe-H** (M Cr and W) as a function of pH in 50% H₂O-50% MeCN. Conditions are: $[C] = 5.0 \times 10^{-5}$ M, $[H_2N-CN]_t = 0.05$ M, T= 25 °C.

рН	[H⁺]/M	k _{obs} (Cr-SMe-H)/s⁻¹	kobs(W-SMe-H)/s ⁻¹
10.52	3.02E-11	0.043	0.19
10.93	1.17E-11	0.059	0.41
11.17	6.76E-12	0.146	0.63
11.37	4.27E-12	0.195	0.84
11.55	2.82E-12	0.252	1.04
11.74	1.82E-12	0.305	1.24
11.94	1.15E-12	0.346	1.43
12.20	6.31E-13	0.399	1.66
12.51	3.09E-13	0.463	1.84
$k_1 \rightarrow$		40.24±0.27 M ⁻¹ s ⁻¹	10.26±0.33 M ⁻¹ s ⁻¹
K _a →		(2.98±0.06)x 10 ⁻¹²	(2.52±0.23)x 10 ⁻¹²

Figure S2(a). Plots of k (M⁻¹s⁻¹) vs. [H⁺] for the reaction of W-XMe-H (X = O and S) with N≡C-NH⁻ at different pH in 50%MeCN-50% H₂O. Conditions are: [C] = 5.0 × 10⁻⁵ M, [NH₂-CN] =0.05 M and temperature 25 °C

Figure S2(b) . Plot of k vs. [H⁺] for the reaction of NC-NH⁻ with **Cr-SMe-Z** in 50% H₂O-50% MeCN at different pH. Conditions are: $[C] = 5.0x10^{-5}$ M, $[H_2N-CN]_t = 0.20$ M, T= 25 °C.

Table S3(a). Summary of Data for the reaction between **Cr-OMe-NMe₂** with N=C-NH⁻ in 50%-MeCN-50% H_2O at 25 $^{\circ}C$.

[CAN]/M	$k_{obs}^{1}/s^{-1}(Cr-OMe-p-NMe_{2}))$
0.005	0.0079
0.015	0.021
0.025	0.04
0.035	0.059
0.05	0.086
1.00E-01	0.159

Figure S3(a). Plot of k_{obs}^1 vs. [N=C–NH⁻] for the reaction between **Cr-OMe-NMe₂** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(b). Summary of Data for the reaction between **Cr-OMe-OMe** with $N=C-NH^{-}$ in 50%-MeCN-50% H₂O at 25 ^oC.

[CAN]/M	k _{obs} ¹/s⁻¹(Cr-OMe-OMe))
0.005	0.639
0.015	1.39
0.025	2.39
0.035	3.28
0.05	5.14
1.00E-01	8.94

Figure S3(b). Plot of k_{obs}^1 vs. [N=C–NH⁻] for the reaction between **Cr-OMe-OMe** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(c). Summary of Data for the reaction between **Cr-OMe-H** with $N \equiv C - NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC.

[CAN]/M	<i>k_{obs}</i> ¹ /s ⁻¹ (Cr-OMe-H)
0.025	16.640
0.035	23.600
0.050	28.500
0.063	36.300
0.075	39.600
0.088	49.400
0.100	58.000

Figure S3(c). Plot of k_{obs}^1 vs. [N=C–NH⁻] for the reaction between **Cr-OMe-H** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(d). Summary of Data for the reaction between **Cr-OMe**-*p*-**F** with N=C-NH⁻ in 50%-MeCN-50% H_2O at 25 $^{\circ}C$.

[CAN]/M	k _{obs} ¹ /s ⁻¹ (Cr-OMe- <i>p</i> -F)
0.01	9.80
0.02	16.90
0.03	32.80
0.04	40.90
0.05	55.90
0.10	100.00

Figure S3(d). Plot of k_{obs}^1 vs. [N=C–NH⁻] for the reaction between **Cr-OMe**-*p*-**F** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(e). Summary of Data for the reaction between **Cr-OMe**-*p*-**CI** with N=C-NH⁻ in 50%-MeCN-50% H_2O at 25 $^{\circ}C$

[CAN]/M	k _{obs} [−] /s ⁻¹ (Cl)
0.005	17.8
0.015	36.9
0.025	65.0
0.035	96.0
0.050	118.0
0.100	230.0

Figure S3(e). Plot of k_{obs}^{1} vs. [N=C–NH⁻] for the reaction between **Cr-OMe**-*p*-**Cl** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(f). Summary of Data for the reaction between **Cr-OEt-H** with $N \equiv C - NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC

[CAN]/M	k _{obs} ^I (Cr-OEt-H)/s ⁻¹
0.025	16.94
0.035	18
0.050	20.6
0.063	23.7
0.075	24.3
0.088	26.4
0.100	29.5

Figure S3(f). Plot of $k_{obs}^{\ \ }$ vs. [N=C–NH⁻] for the reaction between **Cr-OEt-H** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC. **Table S3(g).** Summary of Data for the reaction between **Cr-OEt-H** with $N=C-NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC

[CAN]/M	k _{obs} [™] (Cr-OEt-H)
0.0025	0.117
0.005	0.135
0.015	0.26
0.025	0.48
0.035	0.66
0.05	0.84
0.025	0.45
0.035	0.61
0.05	0.798

Figure S3(g). Plot of k_{obs}^{\parallel} vs. [N=C-NH⁻] for the reaction between **Cr-OEt-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(h). Summary of Data for the reaction between **W-OMe-H** with N=C-NH⁻ in 50%-MeCN-50% H_2O at 25 ^{0}C

[CAN]/M	<i>k</i> _{obs} ^l /(W-OMe-H)/s ⁻¹
0.025	38.850
0.035	51.500
0.050	71.000
0.063	76.000
0.075	89.000
0.088	104.000
0.100	112.000

Figure S3(h). Plot of $k_{obs}^{\ \ }$ vs. [N=C–NH⁻] for the reaction between **W-OMe-H** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(i). Summary of Data for the reaction between **W-OMe-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 $^{\circ}$ C

[CAN]/M	k _{obs} ^Ⅱ /(W-OMe-H)
0.025	6.090
0.035	8.500
0.050	10.900
0.063	15.000
0.075	17.000
0.088	19.400
0.100	22.000

Figure S3(i). Plot of $k_{obs}^{"}$ vs. [N=C–NH⁻] for the reaction between **W-OMe-H** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(j). Summary of Data for the reaction between **W-OEt-H** with $N \equiv C - NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC

[CAN]/M	k _{obs} ^I /W-OEt-H
0.01	42
0.015	46
0.025	56
0.035	61.6
0.05	75

Figure S3(j). Plot of $k_{obs}^{\ \ }$ vs. [N=C–NH⁻] for the reaction between **W-OEt-H** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(k). Summary of Data for the reaction between **W-OEt-H** with $N=C-NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC

[CAN]/M	k _{obs} [™] /W-OEt-H
0.0025	0.137
0.005	0.22
0.015	0.58
0.025	0.889
0.035	1.29

Figure S3(k). Plot of k_{obs}^{\parallel} vs. [N=C-NH⁻] for the reaction between **W-OEt-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(I). Summary of substituent constants and rate constants (k_1) for the reactions of N=C-NH⁻ with Cr-OMe-Zin 50% MeCN-50% Water (v/v) at 25 °C

CI	0.23	3.35	2234.00
F	0.06	2.98	955.20
Н	0	2.72	525.10
Me	-0.17		
OMe	-0.27	1.95	89.27
NMe2	-0.83	0.21	1.61
SPW			

Figure S3(I). Hammette plot of $k_1(M^{-1}s^{-1})$ for the reactions of N=C-NH⁻ with **Cr-OMe-Z** in 50% MeCN-50% Water (v/v) at 25 °C

Table S3(m). Summary of Data for the reaction between **W-OEt-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 $^{\circ}$ C

[CAN]/M	k _{obs} ^{II} /s⁻¹(F)
0.01	0.90
0.02	1.68
0.03	3.60
0.04	4.50
0.05	7.60
0.10	15.20

Figure S3(m). Plot of $k_{obs}^{"}$ vs. [N=C–NH⁻] for the reaction between **Cr-OMe**-*p*-**F** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(n). Summary of Data for the reaction between **W-OEt-H** with $N=C-NH^{-}$ in 50%-MeCN-50% H₂O at 25 $^{\circ}C$

[CAN]/M	<i>k</i> _{obs} ^Ⅱ /s ⁻¹ (Cl!)
0.01	1.85
0.02	4.68
0.03	6.72
0.04	10.20
0.05	15.90
0.10	30.90

Figure S3(n). Plot of k_{obs}^{\parallel} vs. [N=C-NH⁻] for the reaction between **Cr-OMe**-*p*-**CI** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 ⁰C.

Table S3(o). Summary of Data for the reaction between **Cr-OMe-H** with $N \equiv C - NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC

k _{obs} ^{II} /s⁻¹ (Cr-OMe-H)
3.10
4.50
6.70
8.26
8.80
10.29
11.89

Figure S3(o). Plot of k_{obs}^{\parallel} vs. [N=C-NH⁻] for the reaction between **Cr-OMe-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S3(p). Summary of Data for the reaction between **Cr-OMe**-*p*-**OMe** with $N=C-NH^-$ in 50%-MeCN-50% H₂O at 25 ^oC

[CAN]/M	k _{obs} ^{II} /s ⁻¹ (Cr-OMe-OMe)
0.01	0.02
0.02	0.17
0.03	0.22
0.04	0.39
0.05	0.52
0.08	0.80

Figure S3(p). Plot of $k_{obs}^{"}$ vs. [N=C–NH⁻] for the reaction between **Cr-OMe**-*p*-**OMe** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC

CI F H	σ 0.23 0.06 0	log(k₂) 2.492 2.189 2.053	k₂/ M ^{-I} s ^{-I} 310.64 154.55 112.90
OMe	-0.27	1.039	10.93

Figure S3(q). Hammette plot of k_2 ($M^{-1}s^{-1}$) for the reactions of N=C-NH⁻ with **Cr-OMe-Z** in 50% MeCN-50% Water (v/v) at 25 °C

Table S3(q). Summary of substituent constants and rate constants (k_2) for the reactions of N=C-NH⁻ with Cr-OMe-Z in 50% MeCN-50% Water (v/v) at 25 °C

Table S4(a). Summary of Data for the reaction between **Cr-SMe**_{*p*}**-NMe**₂ with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 $^{\circ}$ C.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.043
0.035	0.059
0.050	
0.063	0.105
0.075	0.125
0.088	0.144
0.100	0.167

Figure S4(a). Plot of $k_{obs}^{\ |}$ vs. [N=C–NH⁻] for the reaction between **Cr-SMe**-*p*-**NMe**₂ with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S4(b). Summary of Data for the reaction between **Cr-SMe**-*p*-**OMe** with $N=C-NH^-$ in 50%-MeCN-50% H₂O at 25 ⁰C.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.220
0.035	0.290
0.050	
0.063	0.385
0.075	0.485
0.088	0.547
0.100	0.600

Figure S4(b). Plot of k_{obs}^{\dagger} vs. [N=C–NH⁻] for the reaction between **Cr-SMe**-*p*-**OMe** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S4(c). Summary of Data for the reaction between **Cr-SMe**-*p*-**Me** with N=C-NH⁻ in 50%-MeCN-50% H_2O at 25 $^{\circ}C$.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.260
0.035	0.335
0.050	
0.063	0.519
0.075	0.592
0.088	0.675
0.100	0.768

Figure S4(c). Plot of k_{obs}^{1} vs. [N=C–NH⁻] for the reaction between **Cr-SMe**-*p*-**Me** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S4(d). Summary of Data for the reaction between **Cr-SMe-H** with $N=C-NH^{-}$ in 50%-MeCN-50% H₂O at 25 ^oC.

[CAN]/M	k _{obs} /s ⁻¹
0.0025	0.039
0.005	0.0685
0.015	0.169
0.025	0.265
0.035	0.345
0.05	0.485

Figure S4(d). Plot of k_{obs}^{\dagger} vs. [N=C-NH⁻] for the reaction between **Cr-SMe-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S4(e). Summary of Data for the reaction between **W-SMe-H** with $N \equiv C - NH^{-}$ in 50%-MeCN-50% H₂O at 25 ^oC.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.0025	0.148
0.005	0.265
0.015	0.679
0.025	1.073
0.035	1.446
0.05	2.035

Figure S4(e). Plot of k_{obs}^{\dagger} vs. [N=C-NH⁻] for the reaction between **W-SMe-H** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table S4(f). Summary of Data for the reaction between **Cr-SMe**-*p*-**F** with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 $^{\circ}$ C.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.367
0.035	0.469
0.050	0.762
0.063	0.932
0.075	1.155
0.088	1.332
0.100	1.600

Figure S4(f). Plot of k_{obs}^{\dagger} vs. [N=C-NH⁻] for the reaction between Cr-SMe-*p*-F with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 °C.

Table S4(g). Summary of Data for the reaction between **Cr-SMe-***m***-Cl** with N=C–NH⁻ in 50%-MeCN-50% H_2O at 25 $^{\circ}C$.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.685
0.035	0.850
0.050	
0.063	1.420
0.075	1.610
0.088	1.920
0.100	2.200

Figure S4(g). Plot of $k_{obs}^{\ \ l}$ vs. [N=C–NH⁻] for the reaction between **Cr-SMe-***m***-Cl** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ^oC.

Table	S4(h). Summary of Data for the reaction between Cr-SMe- <i>p</i> -Cl with N≡C−NH ⁻	in 50%-MeCN-50%
H ₂ O at	t 25 °C.	

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.578
0.035	0.769
0.050	1.091
0.063	1.179
0.075	1.440
0.088	1.640
0.100	1.920

Figure S4(h). Plot of k_{obs}^{\dagger} vs. [N=C–NH⁻] for the reaction between **Cr-SMe**-*p*-**Cl** with N=C–NH⁻ in 50%-MeCN-50% H₂O at 25 ⁰C.

[CAN]/M	$k_{\rm obs}$ /s ⁻¹
0.025	0.784
0.035	1.108
0.050	
0.063	1.878
0.075	2.277
0.088	2.657
0.100	3.067
0.050 0.063 0.075 0.088 0.100	1.878 2.277 2.657 3.067

Table S4(i). Summary of Data for the reaction between **Cr-SMe**-*p*-**CF**₃ with N=C-NH⁻ in 50%-MeCN-50% H₂O at 25 $^{\circ}$ C.

Figure S4(i). Plot of $k_{obs}^{\ \ \ }$ vs. [N=C–NH⁻] for the reaction between **Cr-SMe**-*p*-**CF**₃ with N=C–NH⁻ in 50%-MeCN- 50% H₂O at 25 ⁰C.

Table S4(j). Summary of substituent constants and rate constantsfor the reactions of N=C-NH⁻ with Cr-SMe-Z in 50% MeCN-50%Water (v/v) at 25 °C

Substituent	σ	$\log(k_1)$	<i>k</i> ₁ /M ⁻¹ s ⁻¹
CF3	0.540	1.478	30.08
CI(3)	0.370	1.303	20.09
CI	0.230	1.236	17.22
F	0.060	1.215	16.40
Н	0.000	0.968	9.30
Me	-0.170	0.823	6.66
Ome	-0.270	0.702	5.03
NMe2	-0.830	0.217	1.65

Figure S4(j) . Hammette plot for the reactions of N≡C-NH⁻ with Cr-SMe-Z in 50% MeCN-50% Water (v/v) at 25 °C