Supporting Information

Curium(III) citrate speciation in biological systems: An europium(III) assisted spectroscopic and quantum chemical study

Anne Heller,* Astrid Barkleit, Harald Foerstendorf, Satoru Tsushima, Karsten Heim, Gert Bernhard

Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, D-01314 Dresden, Germany

Content:

- Fig. S1: Overview on the various complex species of M^{3+} (M = An(III), Ln(III)) with different ligand species reported in literature^{1, 2-10} for nearly equimolar metal to ligand ratio (a) and ligand excess (b) in dependence on the pH
- Fig. S2: Normalized steady-state luminescence spectra of $3 \cdot 10^{-5}$ M europium(III) + 10^{-3} M citrate at I = 0.1 M and room temperature in dependence on the pH
- Fig. S3: Normalized steady-state luminescence spectra of $3 \cdot 10^{-7}$ M curium(III) + 10^{-3} M citrate at I = 0.1 M and room temperature in dependence on the pH
- Fig. S4: DFT calculated absorption spectra of different EuCitH⁰ (a) and EuCit⁻ (b) structure models
- Table S1: Comparison of log K values for curium(III), americium(III), and europium(III) citrate species

Fig. S1 Overview on the various complex species of M^{3+} (M = An(III), Ln(III)) with different ligand species reported in literature^{1, 2-} ¹⁰ for nearly equimolar metal to ligand ratio (a) and ligand excess (b) in dependence on the pH

Fig. S2 Normalized steady-state luminescence spectra of $3 \cdot 10^{-5}$ M europium(III) + 10^{-3} M citrate at I = 0.1 M and room temperature in dependence on the pH

Fig. S3 Normalized steady-state luminescence spectra of $3 \cdot 10^{-7}$ M curium(III) + 10^{-3} M citrate at I = 0.1 M and room temperature in dependence on the pH

Fig. S4 DFT calculated absorption spectra of different EuCitH⁰ (a) and EuCit⁻ (b) structure models

complex	metal	method ^a	ionic strength / M	log K ^b	referencec
MHCit ⁰	Eu	TRLFS	0.1 (NaClO ₄)	7.5 ± 0.2	p.w.
		SOLVEX	0.1	7.4	4
		SOLVEX	0.1	7.75 ± 0.08	7
		SOLVEX	0.1 (NaClO ₄)	7.78 ± 0.06	10
		POT	0.1 (KNO ₃)	7.98 ± 0.03	8
	Cm	TRLFS	0.1 (NaClO ₄)	7.4 ± 0.2	p.w.
		SOLVEX	0.1	7.6	4
		SOLVEX	0.1	7.74 ± 0.08	7
		SOLVEX	0.1 (NaClO ₄)	7.69 ± 0.07	10
	Am	SOLVEX	0.1	7.6	4
		SOLVEX	0.1	7.74 ± 0.08	7
		SOLVEX	0.1 (NaClO ₄)	7.64 ± 0.06	10
		SOLVEX	0.1 (NaCl)	6.74 ± 0.08	3
		SOLVEX	0.1 (LiClO ₄)	8.0	5
		POT	0.1 (LiClO ₄)	8.69	5
		UV/VIS	1.0 (NaClO ₄)	6.96 ± 0.06	2
M(HCitH)HCit ²⁻	Eu	TRLFS	0.1 (NaClO ₄)	10.8 ± 0.5	p.w.
		SOLVEX	0.1	13.6	4
		SOLVEX	0.1	10.25 ± 0.1	7
		SOLVEX	0.1 (LiClO ₄)	11.11	9
	Cm	TRLFS	0.1 (NaClO ₄)	11.0 ± 0.3	p.w.
		SOLVEX	0.1	13.4	4
		SOLVEX	0.1 (LiClO ₄)	10.69 ± 0.2	6
		SOLVEX	0.1	10.24 ± 0.1	7
	Am	SOLVEX	0.1	13.4	4
		SOLVEX	0.1 (LiClO ₄)	10.76 ± 0.2	6
		SOLVEX	0.1	10.24 ± 0.1	7
		SOLVEX	0.1 (LiClO ₄)	10.6	5
		POT	0.1 (LiClO ₄)	13.25	5
$M(HCit)_2^{3-}$	Eu	TRLFS	0.1 (NaClO ₄)	11.4 ± 0.4	p.w.
、 <i>, ,</i> , , , , , , , , , , , , , , , , ,		SOLVEX	0.1	10.95 ± 0.2	7
		SOLVEX	0.1 (NaClO ₄)	11.12 ± 0.07	10
		POT	0.1 (KNO ₃)	12.84 ± 0.07	8
	Cm	TRLFS	0.1 (NaClO ₄)	11.3 ± 0.7	p.w.
		SOLVEX	0.1	10.94 ± 0.2	7
		SOLVEX	0.1 (LiClO ₄)	11.93 ± 0.2	6
		SOLVEX	0.1 (NaClO ₄)	11.94 ± 0.07	10
	Am	SOLVEX	0.1	10.94 ± 0.2	7
		SOLVEX	0.1 (LiClO ₄)	12.16 ± 0.2	6
		SOLVEX	0.1 (NaClO ₄)	11.89 ± 0.06	10
		SOLVEX	0.1 (NaCl)	11.55 ± 0.08	3
		SOLVEX	0.1 (LiClO ₄)	12.1	5
		POT	0.1 (LiClO ₄)	14.29	5
		UV/VIS	1.0 (NaClO ₄)	10.3 ± 0.2	2
MCit ⁻	Am	POT	0.1 (LiClO ₄)	10.53	5
		UV/VIS	1.0 (NaClO ₄)	12.95 ± 0.02	2
$M(Cit)_{2}^{5}$	Eu	TRLFS	0.1 (NaClO ₄)	21.0 ± 0.2	p.w.

Table S1 Comparison of log K values for curium(III), americium(III), and europium(III) citrate species

^a TRLFS = Time-Resolved Laser-Induced Fluorescence Spectroscopy, SOLVEX = Solvent Extraction, POT = Potentiometric Titration. ^b log K-values corresponding to equations 5 - 8 from the original paper. ^c p.w. = present work

References:

- J. N. Mathur, K. Cernochova and G. R. Choppin, *Inorg. Chim. Acta*, 2007, 360, 1785-1791; P. G. Daniele, A. Derobertis, C. Rigano and S. Sammartano, *Ann. Chim.*, 1985, 75, 115-120; A. V. Stepanov, *Radiokhimiya*, 1959, 1, 668-673; S. Bouhlassa, M. Petitramel and R. Guillaumont, *Bull. Soc. Chim. Fr.*, 1984, 5-11; B. S. Jensen and H. Jensen, *Radiochim. Acta*, 1988, 44/45, 45-49; A. Moutte and R. Guillaumont, *Rev. Chim. Miner.*, 1969, 6, 603-610; A. P. G. Kieboom, C. A. M. Vijverberg, J. A. Peters and H. Vanbekkum, *Recl. Trav. Chim. Pays-Bas*, 1977, 96, 315-316; C. A. M. Vijverberg, J. A. Peters, A. P. G. Kieboom and H. Vanbekkum, *Tetrahedron*, 1986, 42, 167-174; C. B. Yuan, J. Z. Liu, D. Q. Zhao, Y. J. Wu and J. Z. Ni, *Polyhedron*, 1995, 14, 3579-3583; G. E. Jackson and J. Dutoit, *J. Chem. Soc.-Dalton Trans.*, 1991, 1463-1466.
- 2. S. H. Eberle and F. Moattar, *Inorg. Nucl. Chem. Lett.*, 1972, **8**, 265-270.
- 3. E. Ohyoshi and A. Ohyoshi, J. Inorg. Nucl. Chem., 1971, **33**, 4265-4273.
- 4. R. Guillaumont and L. Bourderie, Bull. Soc. Chim. Fr., 1971, 8, 2806-2809.
- 5. S. Bouhlassa and R. Guillaumont, J. Less Common Met., 1984, 99, 157-171.
- 6. S. Hubert, M. Hussonnois, L. Brillard, G. Goby and R. Guillaumont, J. Inorg. Nucl. Chem., 1974, 36, 2361-2366.
- 7. A. V. Stepanov, Zh. Neorg. Khim., 1971, 16, 2981-2985.
- 8. H. Itoh, M. Fujisawa, Y. Ikegami and Y. Suzuki, *Lanthanide Actinide Res.*, 1985, 1, 79-88.
- 9. S. Hubert, M. Hussonnois and R. Guillaumont, J. Inorg. Nucl. Chem., 1973, 35.
- 10. P. Thakur, Y. Xiong, M. Borkowski and G. R. Choppin, Radiochim. Acta, 2012, 100, 1-8.