Lewis Acidic Behavior of B(C₆Cl₅)₃

Haiyan Zhao, Joseph H. Reibenspies and François P. Gabbaï*

Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA. E-mail: gabbai@mail.chem.tamu.edu

Supplementary Information

General Considerations. Commercially available chemicals were purchased and used as provided (Commercial sources: Aldrich for Me₃SiF₂S(NMe₂)₃ (TASF), *n*Bu₄NF, *n*Bu₄NCN, *n*Bu₄NN₃, BCl₃ in *n*-heptane, DMAP; *n*Bu₄NBr, *n*Bu₄NI, Ph₄PCl; Alpha Aesar for *n*-butyllithium (2.6 M in hexanes)). B(C₆Cl₅)₃ was prepared by reaction of pentachlorophenyl lithium with BCl₃ as reported by O'Hare (A. E. Ashley; T. J. Herrington; G. G. Wildgoose; H. Zaher; A. L. Thompson; N. H. Rees; T. Krämer; D. O'Hare, *J. Am. Chem. Soc.*, 2011, **133**, 14727-14740). Diethyl ether and THF were dried over Na/K and freshly distilled prior to use. Dichloromethane and pentane were dried over alumina using a pressure driven solvent purification system. Air-sensitive compounds were handled under N₂ atmosphere using standard Schlenk and glovebox techniques. UV-vis spectra were recorded on an Ocean Optics USB4000 spectrometer with an Ocean Optics ISS light source. Elemental analyses were performed at Atlantic Microlab (Norcross, GA). NMR spectra were recorded on a Varian Unity Inova 400 FT NMR (399.59 MHz for ¹H, 376.03 MHz for ¹⁹F, 128.19 MHz for ¹¹B, 100.45 MHz for ¹³C) spectrometers at ambient temperature. Chemical shifts δ are given in ppm and are referenced against external BF₃·Et₂O (¹¹B and ¹⁹F) or SiMe₄ (¹H and ¹³C).

Crystallography. The crystallographic measurements were performed using a Bruker APEX-II CCD area detector diffractometer (Mo-K_{α} radiation, $\lambda = 0.71069$ Å) for [S(NMe₂)₃][FB(C₆Cl₅)₃] and DMAP-B(C₆Cl₅)₃. In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Subsequent refinement on F² using the SHELXTL/PC package (version 5.1) allowed location of the remaining non-hydrogen atoms.

Synthesis of $[S(NMe_2)_3][FB(C_6Cl_5)_3]$. TASF (11 mg, 0.040 mmol) was added to a solution of $B(C_6Cl_5)_3$ (30 mg, 0.040 mmol) in THF (5 mL) at room temperature. The mixture was stirred for ten minutes. The solvent was removed under vacuum to yield a solid which was washed with diethyl ether to afford $[S(NMe_2)_3][FB(C_6Cl_5)_3]$ as a pale product (35 mg, yield 84%). Single crystals were obtained by slow diffusion of pentane into a THF solution of $[S(NMe_2)_3][FB(C_6Cl_5)_3]$ at -25°C. ¹H NMR (399.59MHz, CDCl_3): δ 2.96 (N-CH₃). ¹³C NMR (100.45 MHz, CDCl_3): δ 38.65 (N-CH₃), 129.03, (s, ortho-C₆Cl₅), 130.23, 130.66, 136.89, 137.49 (C_{*ipso*} not detected). ¹¹B NMR (128.19 MHz, CDCl_3): δ .8 (broad signal). ¹⁹F NMR (376.03 MHz, CDCl₃) -168 (broad). Anal. Calcd for C₂₄H₁₈BFCl₁₅S-1/2THF: C 31.93; H 2.27. Found: C 31.99; H 2.38. (The sample used for EA was obtained by recrystallization from THF. As shown by X-ray diffraction, these crystals contain one THF molecule per molecule of the fluoroborate. The EA results indicate partial loss of the interstitial THF).

Synthesis of DMAP-B(C₆Cl₅)₃. DMAP (5 mg, 0.041 mmol) was added to a solution of B(C₆Cl₅)₃ (30 mg, 0.040 mmol) in THF (5 mL) at room temperature. The mixture was stirred for ten minutes. The solvent was removed under vacuum to yield a solid which was washed with diethyl ether to afford B(C₆Cl₅)₃-DMAP as a pale product (28 mg, yield 79%). Single crystals were obtained by slow diffusion of pentane into a THF solution of DMAP-B(C₆Cl₅)₃ at -25°C. ¹H NMR (399.59 MHz, THF-*d*₈): δ 3.17 (s, 6H, N-CH₃), 6.85 (d, 2H, *meta*-CH, *J* = 7.6 Hz), 7.87 (broad signal, 2H, *ortho*-CH). ¹³C NMR (100.45 MHz, THF-*d*₈): δ 39.61 (N-CH₃), 107.57 (s, *meta*-NC₅H₄), 129.77, 130.45, 131.53 (s, *ortho*-NC₅H₄), 137.97, 139.14, 157.90 (s, *para*-NC₅H₄). ¹¹B NMR (128.19 MHz, THF-*d*₈): 2.0 (s). Anal. Calcd. for C₂₅H₁₀BCl₁₅N₂-1/3THF: C 34.95; H 1.41. Found: C 34.18; H 1.63. (The sample used for EA was obtained by recrystallization from THF. As shown by X-ray diffraction, these crystals contain 3 THF molecule per molecule of DMAP-B(C₆Cl₅)₃. The EA results indicate partial loss of the interstitial THF).

UV-vis titration experiments in CH₂Cl₂. To determine the binding constant of $B(C_6Cl_5)_3$ with various Lewis bases (denoted as X), a CH₂Cl₂ solution of $B(C_6Cl_5)_3$ (3 ml, c = 4.84×10^{-5} M for X = F⁻, c = 5.80×10^{-5} M for X = N₃⁻, c = 6.80×10^{-5} M for X = CN⁻, c = 3.48×10^{-5} M for X = Cl⁻, c = 6.84×10^{-5} M for X = DMAP) inside a UV-cuvette was titrated with incremental amounts of the Lewis base dissolved in CH₂Cl₂

(*n*Bu₄NF for X = F[•] (4.7 mM), *n*Bu₄NN₃ for X = N₃[•] (30 mM), *n*Bu₄NCN for X = CN[•] (8.5 mM), Ph₄PCl for X = Cl[•] (89 mM), or DMAP (26 mM)). All experiments were carried out with dry solvent in an open atmosphere. The absorbance of B(C₆Cl₅)₃ was monitored at λ = 331 nm. The binding constants were calculated by fitting the experimental data to a 1:1 binding isotherm. No changes was observed when 5 equivalents of Br⁻ or I[•] where added to a CH₂Cl₂ solution of B(C₆Cl₅)₃ (3 ml, c = 4.56 × 10⁻⁵ M for X = Br⁻, and c = 4.53 × 10⁻⁵ M for X = Γ) indicating the absence of any significant interaction.

Figure S1. Absorbance changes upon addition of TBAN₃ in CH₂Cl₂ to a CH₂Cl₂ solution of B(C₆Cl₅)₃ (left) and binding isotherm monitored at $\lambda = 331$ nm (right).

Figure S2. Absorbance changes upon addition of TBACN in CH_2Cl_2 to a CH_2Cl_2 solution of $B(C_6Cl_5)_3$ (left) and binding isotherm monitored at $\lambda = 331$ nm (right). When 0.91 equiv. CN⁻ was added, the quenching of absorbance is ca. 90.4%, indicating the CN⁻ binding is quantitative.

Figure S3. Absorbance changes upon addition of TBACN in CH_2Cl_2 to a CH_2Cl_2 solution of $B(C_6Cl_5)_3$ (left) and binding isotherm monitored at $\lambda = 331$ nm (right). The binding process is slow such that the titration could not be completed.

Figure S3. Absorbance changes upon addition of PPh₄PCl in CH₂Cl₂ to a CH₂Cl₂ solution of B(C₆Cl₅)₃ (left) and binding isotherm monitored at $\lambda = 331$ nm. The data could be satisfactorily modeled with $K = 600 (\pm 50) \text{ M}^{-1}$ ($\varepsilon = 15000$ for B(C₆Cl₅)₃, $\varepsilon = 0$ for [ClB(C₆Cl₅)₃]⁻) (right).

UV-vis titration experiments in THF. To determine the binding constant of $B(C_6Cl_5)_3$ with DMAP and pyridine, a THF solution of $B(C_6Cl_5)_3$ (3 ml, c = 5.40×10^{-5} M for DMAP and 7.00×10^{-5} M for pyridine) was placed inside a UV-cuvette and titrated with incremental amounts of the Lewis base dissolved in THF (9.9 mM for

DMAP, and 12.36 M for pyridine). The absorbance of $B(C_6Cl_5)_3$ was monitored at $\lambda = 331$ nm. The binding constants were calculated by fitting the experimental data to a 1:1 binding isotherm.

Figure S4. Absorbance changes upon addition of DMAP in THF to a THF solution of B(C₆Cl₅)₃ (left) and binding isotherm monitored at $\lambda = 331$ nm. The data could be satisfactorily modeled with $K = 1.0 ~(\pm 0.1) \times 10^7 ~M^{-1}$ ($\epsilon = 15000$ for B(C₆Cl₅)₃, $\epsilon = 0$ for DMAP-B(C₆Cl₅)₃) (right).

Figure S5. Absorbance changes upon addition of pyridine to a THF solution of $B(C_6Cl_5)_3$ (left) and binding isotherm monitored at $\lambda = 331$ nm. The data could be satisfactorily modeled with $K = 36 (\pm 4) M^{-1}$ ($\epsilon = 15000$ for $B(C_6Cl_5)_3$, $\epsilon = 0$ for pyridine- $B(C_6Cl_5)_3$) (right).

Computational details. DFT calculations (full geometry optimization) were carried out with the Gaussian 03 program using the gradient-corrected Becke exchange functional (B3LYP) and the Lee-Yang-Parr correlation functional. Geometry optimization was carried out with the following mixed basis set: 6-31+g(d') for the boron, carbon, hydrogen and fluorine atoms, 6-31+g(d) for the chlorine atoms. Frequency calculations, which were carried out on the optimized structure of the compounds, confirmed the absence of any imaginary frequencies. To calculate the fluoride ion affinity (FIA) of the boranes, the optimized geometries of the boranes (BPh₃), $B(C_6C_{15})_3$, and fluoroborates ([FBPh₃]^r, [FB(C_6F_5)_3]^r, [FB(C_6C_{15})_3]^r were

subjected to a single-point energy calculation using the gradient-corrected Becke exchange functional (B3LYP) and the Lee Yang–Parr correlation functional and the 6 - 311+g(2d,p) basis set for all atoms. The fluoride ion affinities were calculated as shown in eq 1 (FIA = $-\Delta H$). The reaction enthalpies ΔH were derived from the energy of each molecule (from the single-point calculation) corrected to enthalpy by the "thermal correction to enthalpy term" obtained in the frequency calculations (Table S1).

borane + F⁻
$$\longrightarrow$$
 fluoroborate eq. 1

	SCF Energies	Correction to	Enthalpy
		enthalpy term	
BPh ₃	-720.0230278	0.292782	-719.7302458
[FBPh ₃] ⁻	-820.0187719	0.294027	-819.7247449
$B(C_{6}F_{5})_{3}$	-2208.989185	0.183468	-2208.805717
$[FB(C_6F_5)_3]^{-1}$	-2309.035134	0.185668	-2308.849466
$B(C_6Cl_5)_3$	-7614.29414	0.164988	-7614.129152
$[FB(C_6Cl_5)_3]^-$	-7714.32235	0.167566	-7714.154784
F-	-99.8886932	0.00236	-99.8863332

Table S1. Computed energies in Hartree

Optimized geometry of BPh₃:

Cartesian coordinates for the optimized geometry of BPh₃:

Ato	om x	У	Z	С	-1.564550	3.354226	-1.104111
В	0.020109	-0.066527	-0.106619	С	-0.887205	2.358826	-0.395050
С	-0.004555	-0.075390	1.463911	Н	-0.067041	-0.098131	5.391689
С	1.113483	-0.499027	2.218727	Н	1.985040	-0.808200	4.168697
С	1.101445	-0.492966	3.615885	Н	2.013411	-0.823742	1.699399
С	-0.049771	-0.091863	4.302927	Н	-2.029359	0.670688	1.643783
С	-1.178572	0.317413	3.584217	Н	-2.079348	0.626387	4.112294
С	-1.146290	0.339688	2.187520	Н	0.449874	-2.749800	0.544188
С	0.825275	-1.167682	-0.885524	Н	1.690440	-4.488449	-0.695530
С	0.936405	-2.488894	-0.394008	Н	2.840113	-3.920973	-2.832735
С	1.638196	-3.475423	-1.091482	Н	2.705876	-1.599733	-3.729502
С	2.281448	-3.157853	-2.293004	Н	1.413449	0.123307	-2.521109
С	2.203686	-1.854943	-2.797632	Н	-1.295955	-0.228092	-2.566902
С	1.472482	-0.882953	-2.110082	Н	-0.431977	2.608231	0.561784
С	-0.760547	1.043318	-0.898034	Н	-1.629106	4.362671	-0.698390
С	-1.367516	0.773400	-2.146259	Н	-2.707658	3.821331	-2.878936
С	-2.074965	1.754069	-2.846284	Н	-2.546545	1.510047	-3.796952
С	-2.167974	3.051300	-2.329799				

Optimized geometry of [FBPh₃]⁻:

Cartesian coordinates for the optimized geometry of [FBPh₃]:

Ato	m x	У	Z	С	-1.539239	-2.101715	-2.405404
С	0.071865	-0.000652	-0.044097	F	-2.363982	-0.630948	-0.097475
С	0.037544	-0.111791	1.361989	В	-1.333214	0.062054	-0.895201
С	1.201734	-0.139388	2.138923	Н	-3.918341	1.099204	-0.897774
С	2.459747	-0.053674	1.528545	Н	-4.780696	3.392356	-1.272574
С	2.527723	0.051902	0.134962	Н	-3.193684	5.274501	-1.704968
С	1.352137	0.072376	-0.628312	Н	-0.737625	4.813030	-1.738595
С	-1.838457	1.611874	-1.110729	Н	1.129074	-0.229087	3.224407
С	-0.973004	2.698995	-1.345490	Н	0.104387	2.529249	-1.343252
С	-1.445187	4.000932	-1.562175	Н	-0.933139	-0.185413	1.850901
С	-2.819485	4.263250	-1.541484	Н	3.370425	-0.075048	2.128193
С	-3.705526	3.205549	-1.299185	Н	3.498333	0.109066	-0.360904
С	-3.217188	1.910325	-1.090450	Н	-0.501545	0.923250	-3.524516
С	-1.204441	-0.733406	-2.328047	Н	-1.910926	-2.594179	-1.507573
С	-0.747129	-0.139371	-3.521335	Н	1.436948	0.130209	-1.714148
С	-0.615122	-0.860657	-4.716043	Н	-0.258051	-0.358653	-5.616999
С	-0.950428	-2.218500	-4.758551	Н	-0.854071	-2.784871	-5.685532
С	-1.418923	-2.835535	-3.591411	Н	-1.691881	-3.892352	-3.607079

Optimized geometry of $B(C_6F_5)_3$:

Cartesian coordinates for the optimized geometry of $B(C_6F_5)_3$

Ato	m x	У	Z	С	-2.741463	-2.664451	0.785497
В	-0.001586	0.000810	0.000152	С	-1.546440	-1.952709	0.767195
С	1.364014	-0.775119	0.006908	F	1.755993	4.389237	-1.558953
С	2.456295	-0.362501	0.786188	F	-0.034906	5.741462	-0.009789
С	3.668708	-1.043795	0.815134	F	-1.811582	4.373991	1.542350
С	3.832125	-2.177506	0.019085	F	-1.816892	1.687000	1.545284
С	2.780509	-2.620869	-0.782910	F	1.790987	1.702187	-1.553701
С	1.574452	-1.927975	-0.765890	F	2.346750	0.720104	1.577845
С	-0.011679	1.571244	-0.003452	F	4.673489	-0.625094	1.590666
С	0.891374	2.324605	-0.770254	F	4.989630	-2.835152	0.024793
С	0.890508	3.715423	-0.795270	F	2.940860	-3.701648	-1.552683
С	-0.027579	4.410225	-0.007890	F	0.594316	-2.391416	-1.562964
С	-0.938182	3.707563	0.781227	F	-0.557630	-2.402758	1.561066
С	-0.923595	2.316763	0.760532	F	-2.883131	-3.749366	1.553074
С	-1.355665	-0.794803	-0.003473	F	-4.671677	-0.692344	-1.577657
С	-2.456645	-0.397239	-0.778596	F	-2.366857	0.688821	-1.567801
С	-3.658331	-1.097371	-0.806076	F	-4.948869	-2.911418	-0.017372
С	-3.801880	-2.235661	-0.012793				

Optimized geometry of $[FB(C_6F_5)_3]$:

Cartesian coordinates for the optimized geometry of $[FB(C_6F_5)_3]$:

Ato	m x	У	Z	С	2.619714	-0.387390	0.954596
С	-0.092677	1.590778	0.305523	F	0.004698	0.000980	2.217359
С	-0.974802	2.457573	0.961876	В	0.001985	-0.000263	0.782605
С	-1.079540	3.818155	0.677058	F	-1.949472	4.603236	1.346137
С	-0.284545	4.373715	-0.320066	F	-0.369774	5.686558	-0.609917
С	0.593833	3.552979	-1.016712	F	-1.815716	1.992177	1.910329
С	0.665969	2.196801	-0.696872	F	2.642041	0.573628	1.902769
С	-1.330123	-0.876271	0.308146	F	4.966535	-0.618930	1.329385
С	-2.223033	-0.529676	-0.706716	F	1.363087	4.077205	-1.993619
С	-3.362306	-1.267967	-1.028415	F	-2.012551	0.571129	-1.470866
С	-3.646512	-2.429187	-0.320446	F	0.502249	-2.057519	-1.451678
С	-2.778732	-2.833186	0.688832	F	2.839574	-3.217911	-2.005709
С	-1.651234	-2.064886	0.974866	F	5.105184	-2.527061	-0.628724
С	1.425157	-0.715917	0.302434	F	-4.189466	-0.871612	-2.018222
С	1.565900	-1.674632	-0.701962	F	-3.035448	-3.970309	1.368474
С	2.774548	-2.291308	-1.026867	F	-0.838009	-2.555161	1.934868
С	3.927363	-1.943532	-0.333757	F	-4.742478	-3.156605	-0.611286
С	3.848613	-0.978069	0.664494	F	1.530855	1.471075	-1.448813

Optimized geometry of $B(C_6Cl_5)_3$:

Cartesian coordinates for the optimized geometry of B(C₆Cl₅)₃:

Ato	m x	У	Z	С	2.578571	-2.795797	0.984136
В	-0.005494	0.000110	0.000849	С	1.829588	-1.608227	0.967561
С	0.752245	1.402597	-0.001976	Cl	-0.667342	2.055675	2.236065
С	0.481298	2.393487	0.962130	Cl	0.787846	4.813077	2.198274
С	1.145882	3.630371	0.979075	Cl	2.942842	5.428716	-0.002733
С	2.114142	3.906296	-0.002444	Cl	3.595211	3.284618	-2.203909
С	2.408026	2.943619	-0.984134	Cl	2.069319	0.566710	-2.241869
С	1.730773	1.713739	-0.966880	Cl	-1.541316	1.521654	-2.232987
С	-1.598583	-0.047119	0.000364	Cl	-4.657712	1.471440	-2.193063
С	-2.360644	0.645301	-0.961618	Cl	-6.180199	-0.184826	-0.001089
С	-3.764284	0.611100	-0.978543	Cl	-4.562318	-1.747121	2.191657
С	-4.447741	-0.132918	-0.000623	Cl	-1.448380	-1.608269	2.234389
С	-3.721480	-0.834432	0.977814	Cl	-0.545730	-2.091348	-2.234042
С	-2.318345	-0.783845	0.961957	Cl	1.070402	-4.757170	-2.197870
С	0.834062	-1.355074	0.003138	Cl	3.259814	-5.244209	0.001322
С	0.621889	-2.360241	-0.960977	Cl	3.783889	-3.066556	2.203716
С	1.358646	-3.555492	-0.978709	Cl	2.099993	-0.443985	2.243265
С	2.342141	-3.773808	0.002115				

Optimized geometry of [FB(C₆Cl₅)₃]:

Cartesian coordinates for the optimized geometry of $[FB(C_6Cl_5)_3]^-$:

Ato	m x	У	Z	С	2.629750	-0.339074	0.922264
С	-0.142978	1.630480	0.165314	Cl	-2.232383	1.718411	1.962796
С	-1.023957	2.444302	0.915565	Cl	-2.127471	4.803894	1.807422
С	-1.039792	3.848366	0.828144	Cl	-0.145815	6.242488	-0.155110
С	-0.172159	4.499546	-0.059653	Cl	1.698442	4.535076	-2.036680
С	0.658885	3.730690	-0.884457	Cl	1.611213	1.447921	-1.945444
С	0.643100	2.328171	-0.773149	Cl	-2.051813	0.660956	-1.955507
С	-1.341684	-0.942050	0.163602	Cl	-4.775848	-0.796638	-2.040945
С	-2.336808	-0.611021	-0.777418	Cl	-5.341865	-3.238000	-0.149787
С	-3.561609	-1.294796	-0.886575	Cl	-3.108434	-4.236407	1.816001
С	-3.816072	-2.394785	-0.057472	Cl	-0.377971	-2.793697	1.965179
С	-2.819890	-2.821037	0.831880	Cl	0.456782	-2.120498	-1.946193
С	-1.609617	-2.108923	0.917168	Cl	3.086078	-3.741060	-2.030231
С	1.486432	-0.694145	0.168471	Cl	5.482762	-2.997741	-0.143439
С	1.699875	-1.723385	-0.770008	Cl	5.223216	-0.563098	1.819384
С	2.906775	-2.438483	-0.878493	Cl	2.602427	1.068755	1.971657
С	3.986249	-2.103587	-0.051023	F	-0.003369	-0.002495	2.003133
С	3.853968	-1.027065	0.836990	В	0.000226	-0.002065	0.565258