

Supporting information

Fig. S1 ¹H NMR spectra for bimetallic ruthenium complexes **1**, from top to down, **1a**, **1b** and **1c** respectively.

Fig. S2 Cyclic voltammetry (CV) of 1 μ M bimetallic ruthenium complexes 1 in PF₆⁻ salt at glassy carbon electrode, scan rate: 0.1 V/s

_

dyes	Electronic	Energy ^b (ev)	f ^c	Composition ^d	CI ^e
1d	S_0-S_{11}	2.7549	0.0110	H-2→L+1 H-2→L+5	0.55
	S ₀ -S ₁₂	(450.4 mm) 2.7559	0.0164	$H-2 \rightarrow L+3$ $H-3 \rightarrow L$ $H \rightarrow 1 + 4$	0.43
	S ₀ -S ₁₃	2.8623 (433.2 nm)	0.1187	$H-3 \rightarrow L+4$ $H-5 \rightarrow L+2$	0.40
				H-3→L H-3→L+4	0.33 0.39
	S ₀ -S ₁₄ S ₀ -S ₁₅	2.8726 (431.6 nm) 2.8865 (429.5 nm)	0.1309 0.1338	$H-4 \rightarrow L+3$ $H-2 \rightarrow L+1$	0.43 0.34
				H-2→L+5 H-5→L	0.39 0.29
				H-5→L+4 H-3→L+2	0.38 0.43
	S ₀ -S ₁₆	2.8891	0.0828	H-4→L+1 H-4→L+5	0.32 0.40
1a	S ₀ -S ₁₃	2.8659 (432.6 nm) 2.8685 (432.2 nm) 2.8781 (430.8 nm)	0.1294 0.1224 0.0937	H-2→L+3 H-5→L+2	0.44 0.27
				H-4→L+3 H-4→L+5	0.26 0.23
				H-3→L H-3→L+4	0.21 0.25
				H-2→L+1 H-2→L+3	0.24
				$H-2 \rightarrow L+3$ $H-2 \rightarrow L+5$	0.22
	S ₀ -S ₁₄ S ₀ -S ₁₅			$H-3 \rightarrow L+2$ H-4 $\rightarrow L+3$ H-3 $\rightarrow L$	0.33 0.20 0.26
				H-3→L+4 H-5→L	0.33
				$H = 5 \rightarrow L + 4$ $H = 2 \rightarrow L + 2$	0.37
	S ₀ -S ₁₆	2.8792 (430.6 nm)	0.1301	$H-3 \rightarrow L+2$ $H-4 \rightarrow L+1$	0.28
				$H-4 \rightarrow L+3$ $H-4 \rightarrow L+5$	0.27
				$\begin{array}{c} \text{H-2} \rightarrow \text{L+3} \\ \text{H-2} \rightarrow \text{L+5} \end{array}$	0.31 0.27
1b	S ₀ -S ₉	2.7293 (454.3 nm)	0.0133	H-2→L H-2→L+4	0.56 0.23

Table S1. Selected Electronic Excitation Energies (eV) and Oscillator Strengths (*f*), Configurations of the Low-Lying Excited States of the complexes **1**^a

	S ₀ -S ₁₃	2.8697 (432.0 nm)	0.1426	H-5→L+2	0.39
				H-2→L	0.30
				H - 2→L+4	0.34
		2.8731 (431.5 nm)	0.1377	H-4→L+3	0.40
	$S_{0}-S_{14}$			H-3→L+1	0.30
				H - 3→L+5	0.36
	S ₀ -S ₁₅	2.8765 (431.0 nm)	0.1086	H-5→L	0.29
				H - 5→L+4	0.31
				H - 3→L+3	0.22
				H-2→L+2	0.33
		2.8781 (430.8 nm)	0.0925	H - 5→L+4	0.20
				H - 4→L+1	0.29
	S ₀ -S ₁₆			H - 4→L+5	0.32
				H-3→L+3	0.35
				H-2→L+2	0.21
		2.8630 (433.1 nm)		H-4→L+1	0.24
	S ₀ -S ₁₃		0.0237	H-4→L+5	0.31
				H-2→L+1	0.23
				H-2→L+3	0.32
	S ₀ -S ₁₄	2.8637 (433.0 nm)	0.1777	H-5→L	0.24
				H-5→L+2	0.23
				H-5→L+4	0.28
				H-3→L	0.20
				H-3→L+2	0.31
1c				H-3→L+4	0.20
IC	S ₀ -S ₁₅	2.8761 (431.1 nm)	0.1700	H-5→L	0.22
				H-5→L+2	0.37
				H-5→L+4	0.23
				H-3→L	0.21
				H-3→L+2	0.26
				H-3→L+4	0.36
	S ₀ -S ₁₆	2.8834 (430.0 nm)	0.1033	H-4→L+1	0.22
				H-4→L+3	0.41
				H-2→L+3	0.23
				H-2→L+5	0.38

^{*a*} Calculated by TDDFT//B3LYP/6-311G(d), based on the DFT//B3LYP/6-311G(d) optimized ground state geometries. ^{*b*} Only the low-lying excited states and some allowed transitions were presented. ^{*c*} Oscillator strength. ^{*d*} Only the main configurations with configuration interaction (CI) coefficients >0.2 are presented. ^{*e*} CI coefficients are in absolute values.

dyes	Electronic transition	Energy (ev) ^b	f^{ϵ}	Composition	CI^d
1a	S ₀ -T ₁	2.0958 (591.6 nm)	0.0001	H→L	0.69
1b	S ₀ -T ₁	2.1107 (587.4 nm)	0.0001	H→L	0.69
1c	S ₀ -T ₁	2.0780 (596.7 nm)	0.0001	H→L	0.69
1d	S ₀ -T ₁	2.0929 (592.4 nm)	0.0003	H→L	0.69

Table S2. Selected Electronic Excitation Energies (eV) and Oscillator Strengths (*f*), Configurations of the Low-Lying Triplet Excited States of the complexes **1**^a

^{*a*} Calculated by TDDFT//B3LYP/6-311G(d), based on the DFT//B3LYP/6-311G(d) optimized ground state geometries. ^{*b*} Only the selected excited states were presented. ^{*c*} Oscillator strength. ^{*d*} CI coefficients are in absolute values.