Supporting information

A Small-molecular Europium Complex with Anion Sensing Sensitivity

Jianwei wang,^a Jiang Wu,^a Yanmei Chen,^b Haiping Wang,^a Yiran Li,^a Weisheng Liu,^a Hao Tian,^a Ting Zhang,^a Jun Xu,^a and Yu Tang^{*a}

Table S1. Selected bond lengths (A) and angles ($^{\circ}$) for the EuL(NO ₃) ₃ complex					
O(1)-Eu(2)	2.615(8)	N(1)-Eu(2)	2.593(10)	Eu(2)-O(2)	2.326(8)
Eu(2)-O(3)	2.454(8)	Eu(2)-O(7)	2.455(9)	Eu(2)-O(10)	2.479(9)
Eu(2)-O(6)	2.486(10)	Eu(2)-O(12)	2.500(10)	Eu(2)-O(9)	2.501(9)
Eu(2)-O(13)	2.514(9)	C(2)-O(1)-Eu(2)	121.6(7)	C(10)-O(1)-Eu(2)	119.8(7)
C(9)-N(1)-Eu(2)	118.1(8)	C(1)-N(1)-Eu(2)	119.6(8)	O(2)-Eu(2)-O(3)	153.3(3)
O(2)-Eu(2)-O(7)	75.9(3)	O(3)-Eu(2)-O(7)	79.6(3)	O(2)-Eu(2)-O(10)	130.9(3)
O(3)-Eu(2)-O(10)	75.5(3)	O(7)-Eu(2)-O(10)	139.7(3)	O(2)-Eu(2)-O(6)	75.7(3)
O(3)-Eu(2)-O(6)	80.6(3)	O(7)-Eu(2)-O(6)	50.7(3)	O(10)-Eu(2)-O(6)	149.2(3)
O(2)-Eu(2)-O(12)	74.2(3)	O(3)-Eu(2)-O(12)	116.6(3)	O(7)-Eu(2)-O(12)	90.1(4)
O(10)-Eu(2)-O(12)	73.8(3)	O(6)-Eu(2)-O(12)	135.4(4)	O(2)-Eu(2)-O(9)	85.1(3)
O(3)-Eu(2)-O(9)	120.9(3)	O(7)-Eu(2)-O(9)	157.6(3)	O(10)-Eu(2)-O(9)	50.3(3)
O(6)-Eu(2)-O(9)	135.6(3)	O(12)-Eu(2)-O(9)	73.1(3)	O(2)-Eu(2)-O(13)	113.2(3)
O(3)-Eu(2)-O(13)	67.5(3)	O(7)-Eu(2)-O(13)	70.8(3)	O(10)-Eu(2)-O(13)	70.6(3)
O(6)-Eu(2)-O(13)	117.3(3)	O(12)-Eu(2)-O(13)	50.4(3)	O(9)-Eu(2)-O(13)	107.1(3)
O(2)-Eu(2)-N(1)	121.7(3)	O(3)-Eu(2)-N(1)	63.1(3)	O(7)-Eu(2)-N(1)	119.8(3)
O(10)-Eu(2)-N(1)	75.4(3)	O(6)-Eu(2)-N(1)	76.7(3)	O(12)-Eu(2)-N(1)	147.8(4)
O(9)-Eu(2)-N(1)	80.3(3)	O(13)-Eu(2)-N(1)	125.1(3)	O(2)-Eu(2)-O(1)	61.3(3)
O(3)-Eu(2)-O(1)	121.7(3)	O(7)-Eu(2)-O(1)	114.2(3)	O(10)-Eu(2)-O(1)	105.9(3)
O(6)-Eu(2)-O(1)	70.9(3)	O(12)-Eu(2)-O(1)	119.5(3)	O(9)-Eu(2)-O(1)	64.7(3)
O(13)-Eu(2)-O(1)	169.6(3)	N(1)-Eu(2)-O(1)	61.4(3)	C(11)-O(2)-Eu(2)	132.1(7)
C(18)-O(3)-Eu(2)	123.8(7)	C(19)-O(3)-Eu(2)	130.0(7)	N(3)-O(6)-Eu(2)	96.0(9)
N(3)-O(7)-Eu(2)	97.6(8)	N(4)-O(9)-Eu(2)	96.6(8)	N(4)-O(10)-Eu(2)	97.6(8)
N(5)-O(12)-Eu(2)	96.8(8)	N(5)-O(13)-Eu(2)	97.0(8)		

(Å) $(0) f_{0}$ 1.1 01 1 1 1 -- 1 0 1