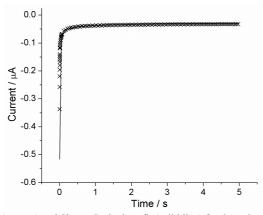

Exploring the fate of the tris(pentafluorophenyl)borane radical anion in weakly coordinating solvents

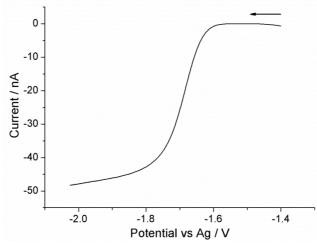
Elliot J. Lawrence^a, Vasily S. Oganesyan, Gregory G. Wildgoose and Andrew E. Ashley


Supporting Information

Cyclic Voltammetry

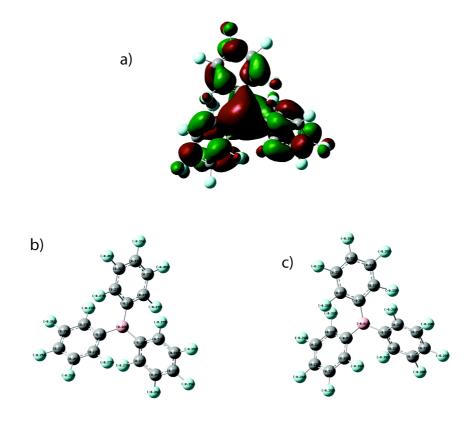
SI 1 Overlaid cyclic voltammograms of $B(C_6F_5)_3$ in CH_2Cl_2 (5 mM, 0.05 M [nBu_4N][$B(C_6F_5)_4$]) recorded at scan rates of 50-5000 mV s⁻¹ at a Pt macrodisk working electrode and ambient temperature.

Chronoamperometry


SI 2 Experimental chronoamperogram (crosses) and Shoup–Szabo best fit (solid line) for the reduction of $B(C_6F_5)_3$ in DFB (5 mM, 0.05 M ["Bu₄N][B(C₆F₅)₄]) at a 30 µm radius Pt microdisk.

^a Energy & Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom. E-mail: G.Wildgoose@uea.ac.uk

b Department of Chemistry, Imperial College London, South Kensington,


London SW7 2AZ, United Kingdom.

Linear Sweep Voltammetry

SI 3 Linear sweep voltammogram for the one-electron reduction of $B(C_6F_5)_3$ in CH_2Cl_2 (4.8 mM, 0.05 M ["Bu₄N][B($C_6F_5)_4$]) recorded at a scan rate of 5 mV s⁻¹ at a 31 μ m Pt microdisk working electrode.

DFT calculations

SI 4 DFT calculations using the spin–unrestricted B3LYP 6-311+G(d,p) basis set for: a) the SOMO of the $B(C_6F_5)_3$ • radical anion; Charge density distribution based on Mulliken electron population analysis for b) $B(C_6F_5)$ and c) $B(C_6F_5)_3$ • radical anion.