Supporting information

From well-defined Pt(II) surface species to the controlled growth of silica supported Pt nanoparticles

Pierre Laurent,^{*a,b*} Laurent Veyre,^{*a*} Chloé Thieuleux,^{*a*} Sébastien Donet,^{*b*} and Christophe Copéret^{*a,c*}

a Université de Lyon, Institut de Chimie de Lyon, UMR C2P2 - CNRS - Université Lyon 1-ESCPE Lyon, Equipe Chimie Organométallique de Surface 43, Bd du 11 Novembre 1918 F-69616 Villeurbanne, France.

b CEA, LITEN, Département des Technologies des Nanomatériaux, Laboratoire des Technologies de Surfaces (LTS), 17, Rue des Martyrs, 38054 Grenoble, France

c Present address: ETH Zürich, Department of Chemistry, Laboratory of Inorganic Chemistry, Wolfgang Pauli Strasse 10, CH-8093, Zürich, Switzerland.

A.	Analytical techniques	2
B.	Single Crystal X-Ray diffraction	3
C.	(COD)Pt(Me) ₂	4
D.	$(COD)Pt(OSi(OtBu)_3)_2$	8
E.	$(COD)Pt(Me)(OSi(OtBu)_3)$	
F.	$(COD)Pt(Me)N(SiMe_3)_2$	16
G.	$(COD)Pt(Cl)(N(SiMe_3)_2)$	
H.	$(COD)Pt(OSi(OtBu)_3)(N(SiMe_3)_2)$	24
I.	$HOSi(OtBu)_3$	
J.	¹³ C SS-NMR spectra of Pt complexes grafted onto SiO ₂₋₂₀₀	
K.	Maximum surface coverage for (COD)Pt(R)(OSi≡) species	

A. Analytical techniques

Solid State Nuclear Magnetic Resonance Spectroscopy

¹H magic angle spinning (MAS) and ¹³C cross polarization (CP)-MAS solid-state NMR spectra were recorded on a Brüker Avance III 500 MHz spectrometer with a conventional double resonance 4 mm CP-MAS probe operating respectively at 500 MHz for 1H and 125 MHz for 13C. The samples were introduced under Ar in a zirconia rotor, which was then tightly closed. In all experiments, the rotation frequency was set to ca. 10 kHz. For cross polarization experiments the contact time was set to 2 ms. Chemical shifts are given with respect to TMS as external references for ¹H and ¹³C NMR (0 ppm).

TEM microscopy

All samples for TEM analysis were prepared under air by directly dipping the TEM grids into the powder samples to avoid the use of any solvent associated with the risk of aggregating or leaching of the nanoparticles. A Philips CM120 Transmission Electron Microscope was used at the Centre Technologique des Microstructures Université Lyon 1, the acceleration voltage was set to 120 kV.

Direct Reflectance Infrared Fourier Transform Spectroscopy (DRIFT).

Infrared spectra were recorded on a Nicolet Magna 550 FT spectrometer using a custom infrared cell equipped with CaF_2 windows, allowing in situ studies. Typically, 64 scans were accumulated for each spectrum (resolution 4 cm⁻¹). The reflectance measurements were refined according to the Kubelka-Munk theory for enhanced resolution. Samples are loaded under argon in a glove box.

B. Single Crystal X-Ray diffraction

Table S-1.

	$(COD)Pt(Me)(OSi(OtBu)_3)$ (2)	$(COD)Pt(OSi(OtBu)_3)(N(SiMe)_3)$ (3)
Formula	$C_{21}H_{42}PtO_4Si$	C ₂₆ H ₅₇ NPtO ₄ Si ₃
Formula weight (g.mol ⁻¹)	581.74	727.09
Crystal size (mm)	0.38x0.21x0.13	0.63x0.53x0.45
Color, morphology	coloreless	light yellow
ρ (g.cm ⁻³)	1.563	1.452
Lattice type, crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/n$	<i>P</i> -1
Z	2	2
Cell constant		
a (Å)	9.465(1)	10.5195(5)
b (Å)	8.6144(9)	11.5936(6)
c (Å)	30.436(3)	14.5167(8)
α (°)	90	72.425(5)
β (°)	95.187(9)	80.632(4)
γ (°)	90	89.822(4)
V (Å ³)	2471.4(4)	1663.3(2)
F ₀₀₀	1168	744
μ (Mo K α) (mm ⁻¹)	5.75	4.36
θ (°)	3.6-29.5	3.5-29.5
Scan type	ω scans	ω scans
Temperature (K)	150	150
Measured reflections	22806	43516
Refinement	full least-square matrix on F^2	full least-square matrix on F^2
Independent relections	6069	8476
No. Parameters	244	317
$R[F^2>2\sigma(F^2)]/wR_2$	0.047/ 0.149	0.031/ 0.066
GoF	0.99	1
Max peak in final diff. map (e- $Å^{-3}$)	2.09	1.86
Min peak in final diff. map (e- Å-3)	-3.57	-1.76

C. (COD)Pt(Me)₂

Figure S1. IR-DRIFT

a) SiO_{2-700} , b) (COD)Pt(Me)₂@SiO₂₋₇₀₀, c) after static H₂ treatment, d) SiO₂₋₂₀₀, e)

(COD)Pt(Me)₂@SiO₂₋₂₀₀, f) after static H₂ treatment

	grafted	after H ₂
SiO ₂₋₇₀₀	3057/3001/2945/2927/2877/2842/2801	-
SiO ₂₋₂₀₀	3018/3005/2955/2930/2894/2648/2802	-

lb=100Hz)

lb=100Hz)

Solid-state NMR of (COD)Pt(Me)₂ mixed in the solid state with SiO₂₋₇₀₀

 ^{13}C CP/MAS solid state NMR spectra of (COD)Pt(Me)_2 + SiO_{2-700}~(d1 = 2 \text{ s}, 3433 \text{ scans},

lb=100Hz)

(COD)Pt(Me)₂@SiO₂₋₂₀₀ treated under static H₂ atmosphere. 170 nanoparticles count. Mean

size 3.0 (σ=0.7) nm.

(COD)Pt(Me)2@SiO2-700 treated under static H2 atmosphere. 212 nanoparticles count. Mean

size 2.4 (σ=0.9) nm.

D. (COD) $Pt(OSi(OtBu)_3)_2$

Figure S4. IR-DRIFT

a) SiO₂₋₇₀₀, b) (COD)Pt(OSi(OtBu)₃)₂@SiO₂₋₇₀₀, c) after static H₂ treatment, d) SiO₂₋₂₀₀, e)

 $(COD)Pt(OSi(OtBu)_3)_2@SiO_{2-200}, f)$ after static H₂ treatment

	grafted	after H ₂
SiO ₂₋₇₀₀	3370/2975/2933/2905/2876	2982/2955/2938/2913/2880
SiO ₂₋₂₀₀	3420/2975/2931/2905/2876/2850	2984/2040

13C CP/MAS solid state NMR spectra of (COD)Pt(OSi(OtBu)₃)₂@SiO₂₋₂₀₀ (d1 = 4 s, 12766

scans, lb=100Hz)

13C CP/MAS solid state NMR spectra of (COD)Pt(OSi(OtBu)₃)₂@SiO₂₋₇₀₀ (d1 = 2 s,2618

scans, lb=50Hz)

Figure S6. TEM

(COD)Pt(OSi(OtBu)₃)₂@SiO₂₋₂₀₀ treated under static H₂ atmosphere. 200 nanoparticles count.

(COD)Pt(OSi(OtBu)₃)₂@SiO₂₋₇₀₀ treated under static H₂ atmosphere. 200 nanoparticles count.

Mean size 2.0 (σ =0.6) nm.

 $(COD)Pt(OSi(OtBu)_3)_2 @SiO_{2\text{-}700} \text{ treated under } H_2 \text{ flow. 200 nanoparticles count. Mean size}$

1.8 (σ=0.4) nm.

E. (COD)Pt(Me)(OSi(OtBu)₃)

Figure S7.

Liquid NMR of 2 (COD) $Pt(Me)(OSi(OtBu)_3)$ in C_6D_6 .

¹³C NMR in C6D6, d1=1sec, 17709 scans

¹**H** NMR (C₆D₆; δ , ppm): 1.16 (t, 3H, CH₃, JPt-H=75Hz), 1.50 (m, 4H, endo CH₂), 1.62 (s, 27H, OCMe₃), 1.80 (m, 4H, exo CH₂), 3.57 (t, 2H, =CH, trans to OSi, JPt-H=66 Hz), 5.90 (t, 2H, =CH, trans to CH₃, JPt-H=30Hz).

¹³C NMR (C_6D_6 ; δ , ppm): 6.9 (s, CH₃, JPt-C=700 Hz), 27.6 (s, CH₂), 31.6 (s, CH₂), 32.2 (s, OCMe₃), 71.4 (s, OCMe₃), 73.4 (s, =CH, trans to OSi, JPt-C=227 Hz), 113.3 (s, =CH, trans to CH₃, JPt-C=26.5 Hz).

Figure S8. IR-DRIFT

a) SiO₂₋₇₀₀, b) (COD)Pt(Me)(OSi(OtBu)₃)@SiO₂₋₇₀₀, c) after static H₂ treatment, d) SiO₂₋

200, e) (COD)Pt(Me)(OSi(OtBu)₃)@SiO₂₋₂₀₀, f) after static H₂ treatment

	grafted	after H ₂
SiO ₂₋₇₀₀	3015/2977/2954/2932/2893/2888/2846/2800	2983
SiO ₂₋₂₀₀	3413/3013/2975/2951/2928/2890/2844/2801	2984

¹³C CP/MAS solid state NMR spectra of (COD)Pt(Me)((OSi(OtBu)_3)@SiO_{2-700} (d1 = 6 s,

38069 scans, lb=100Hz)

Figure S10. TEM

(COD)Pt(Me)((OSi(OtBu)₃)@SiO₂₋₂₀₀ treated under static H₂. 170 nanoparticles count. Mean

size 2.6 (σ=1.2) nm.

(COD)Pt(Me)(OSi(OtBu)₃)/SiO₂₋₇₀₀ treated under static H₂. 226 nanoparticles count. Mean

size 2.0 (σ =0.6) nm.

F. (COD)Pt(Me)N(SiMe₃)₂

¹³C NMR, d1=1sec, 10000 scans

¹**H** NMR (C6D6; δ , ppm): 0.46 (s, 18H, -Si*Me*₃), 1.05 (t, 3H, Pt-C*H*₃, JPt-H=80Hz), 1.47 (m, 4H, endo *CH*₂), 1.80 (m, 4H, exo *CH*₂), 3.79 (t, 2H, =*CH*, trans to N, JPt-H=60 Hz), 5.18 (t, 2H, =*CH*, trans to CH₃, JPt-H=30Hz).

¹³C NMR (C6D6; δ, ppm): 5.8 (t, *C*H₃, Me, JPt-C=726.8 Hz), 6.8 (m, Si*C*H3), 28.1 (t, *C*H₂, JPt-C=12.9 Hz), 30.8 (t, *C*H₂, JPt-C=15.9 Hz), 83.9 (t, =*C*H, trans to N, JPt-C=161.3 Hz), 111.6 (s, =*C*H, trans to CH₃, JPt-C=29.4 Hz).

a) SiO₂₋₇₀₀, b) (COD)Pt(Me)(N(SiMe₃)₂)@SiO₂₋₇₀₀, c) after static H₂ treatment, d) SiO₂₋₂₀₀,

e) (COD)Pt(Me)(N(SiMe ₃) ₂)@SiO ₂₋₂₀₀	$_0$, f) after static H ₂ treatment
--	---

	grafted	after H ₂
SiO ₂₋₇₀₀	3017/3002/2962/2957/2932/2895/2846/2802	3747/2966//2907/1980
SiO ₂₋₂₀₀	3014/3000/2954/2927/2890/2844/2796	2965/2905/1982

¹³C CP/MAS solid state NMR spectra of (COD)Pt(Me)(N(SiMe_3)_2)/SiO_{2-(200)} (d1 = 2 s, 26482)

scans, lb=100Hz)

¹³C CP/MAS solid state NMR spectra of (COD)Pt(Me)(N(SiMe₃)₂)@SiO₂₋₇₀₀ (d1 = 2 s, 10379)

scans, lb=100Hz)

Figure S14. TEM

(COD)Pt(Me)(N(SiMe₃)₂)@SiO₂₋₂₀₀ treated under static H₂. 150 nanoparticles count. Mean

size 3.3 (σ=1.0) nm.

(COD)Pt(Me)(N(SiMe₃)₂)@SiO₂₋₇₀₀ treated under static H₂ atmosphere. 221 nanoparticles

count. Mean size 2.1 (σ =0.9) nm.

 $(COD)Pt(Me)(N(SiMe_3)_2) @SiO_{2\text{-}700} \ treated \ under \ H_2 \ flow. \ 221 \ nanoparticles \ count. \ Mean$

size 1.7 (σ=0.8) nm.

G. (COD)Pt(Cl)(N(SiMe₃)₂)

Figure S15. IR-DRIFT

a) SiO₂₋₇₀₀, b) (COD)Pt(Cl)(N(SiMe₃)₂)@SiO₂₋₇₀₀, c) after static H₂ treatment, d) SiO₂₋₂₀₀,

e) (COD)Pt(Cl)(N(SiMe_3)_2)@SiO_{2-200}, f) after static H_2 treatment

	grafted	after H ₂
SiO ₂₋₇₀₀	3022/3008/2964/2934/2902/2888	2966/2907
SiO ₂₋₂₀₀	3023/3009/2962/2942/2934/2900/2853	2964/2907

scans, lb=100Hz)

Note: the additional peak at 60 ppm is attributed to physisorbed diethylether.

Figure S17. TEM

(COD)Pt(Cl)(N(SiMe₃)₂)@SiO₂₋₂₀₀ treated under static H₂ atmosphere.

 $(COD)Pt(Cl)(N(SiMe_3)_2)@SiO_{2-700}$ treated under static H₂ atmosphere.

 $(COD)Pt(Cl)(N(SiMe_3)_2)@SiO_{2-700}$ treated under H₂ flow. 103 nanoparticles count. Mean size

 $6.3 (\sigma = 2.4) \text{ nm.}$

H. (COD)Pt(OSi(OtBu)₃)(N(SiMe₃)₂)

¹³C NMR, d1=1sec, 1875 scans.

¹**H** NMR (C6D6; δ, ppm): 0.54 (s, 18H, -Si*Me*₃), 1.31 (m, 4H, endo C*H*₂), 1.54 (s, 27H, OC*Me*₃), 1.94 (m, 4H, exo C*H*₂), 4.55 (t, 2H, =C*H*, trans to OSi, JPt-H=66 Hz), 6.01 (t, 2H, =C*H*, trans to N, JPt-H=51Hz).

¹³C NMR (C6D6; δ, ppm): 6.8 (s, OC*Me*₃), 7.0 (s, Si*Me*₃), 29.2 (s, CH₂), 30.7 (s, CH₂, COD), 32.3 (s, OC*Me*₃), 71.8 (s, OCMe₃), 84.4 (s, =CH, trans to OSi), 100.8 (s, =CH, trans to N).

a) SiO₂₋₇₀₀, b) (COD)Pt(OSi(OtBu)₃)(N(SiMe₃)₂)@SiO₂₋₇₀₀, c) after static H₂ treatment, d)

SiO₂₋₂₀₀, e) (COD)Pt(OSi(OtBu)₃)(N(SiMe₃)₂)@SiO₂₋₂₀₀, f) after static H₂ treatment

	grafted	after H ₂
SiO ₂₋₇₀₀	2976/2956/2951/2899/2851	2981/2965/2909
SiO ₂₋₂₀₀	2977/2958/2933/2900/2852	2983/2964/2906

s, 10416 scans, lb=100Hz)

Figure S21. TEM

(COD)Pt(OSi(OtBu)₃)(N(SiMe₃)₂)@SiO₂₋₂₀₀ treated under static H₂ atmosphere. 189

 $(COD)Pt(OSi(OtBu)_3)(N(SiMe_3)_2)@SiO_{2-700} treated under static H_2 atmosphere. 200$

nanoparticles count. Mean size 2.1 (σ =0.6).

I. HOSi(OtBu)₃

For the methyl-siloxy complexes grafting, IR-DRIFT reveals the presence of *t*Bu units on the surface, to address the question whether the silanol is absorbed or grafted on the surface, SiO₂₋₇₀₀ was contacted with 1.2 equivalents of tris(tert-butoxy)silanol in pentane for 3 hours followed by multiple washings and secondary vacuum drying, mimicking the full process of a grafting procedure. Typical *t*Bu v(C-H) vibrations at 2982, 2938, 2912 and 2877 cm⁻¹ are observed by IR-DRIFT. A large IR-band is observed at 3360 cm⁻¹ and can be attributed to the silanol of absorbed tris(tert-butoxy)silanol. By ¹³C SS-NMR the C(CH₃)₃ and C(CH₃)₃ are respectively found at 71 and 30 ppm.

After treatment under H_2 under static atmosphere *t*Bu unit are still present at the surface as demonstrated by IR-DRIFT spectroscopy and consumption of surface OH is evidenced by the intensity diminution of the band at 3747 cm⁻¹. Those observations indicates the probable formation of SiO bonds thus anchoring the tris(tert-butoxy)silanol to the surface.

Figure S22. Solid-state NMR of HOSi(OtBu)₃ absorbed onto SiO₂₋₇₀₀

¹³C CP/MAS solid state NMR spectra of HOSi(OtBu)₃@SiO₂₋₇₀₀ (d1 = 2 s, 28529 scans,

lb=100Hz)

Figure S23. IR-DRIFT

a) SiO₂₋₇₀₀, b) after static H₂ treatment, c) HOSiO(*t*Bu₃)₃@SiO₂₋₇₀₀

$$\begin{split} \text{IR-DRIFT} & \text{spectra} & \text{of} & \text{a} \right) & \text{SiO}_{2-700} & \text{b} \right) & (\text{COD})\text{Pt}(\text{Me})(\text{N}(\text{SiMe}_3)_2 @ \text{SiO}_{2-700}, & \text{c}) \\ & (\text{COD})\text{Pt}(\text{OSi}(\text{O}t\text{Bu})_3)_2 @ \text{SiO}_{2-700}, & \text{d} \right) & (\text{COD})\text{Pt}(\text{Me})(\text{OSi}(\text{O}t\text{Bu})_3) @ \text{SiO}_{2-700}, & \text{e}) \\ & (\text{COD})\text{Pt}(\text{OSi}(\text{O}t\text{Bu})_3)(\text{N}(\text{SiMe}_3)_2 @ \text{SiO}_{2-700}, & \text{f}) & \text{HOSi}(\text{O}t\text{Bu})_3 @ \text{SiO}_{2-700} (\text{smaller Y scale}). \end{split}$$

J. ¹³C SS-NMR spectra of Pt complexes grafted onto SiO₂₋₂₀₀.

K. Maximum surface coverage for (COD)Pt(R)(OSi≡) species

Table S2.

The maximum radius of the grafted molecule is determined from DRX data of $(COD)Pt(R)(OSi(OtBu)_3)$ when available. For $(COD)Pt(Cl)(OSi\equiv)$ the measure is derived from the $(COD)Pt(CH_3)(OSi(OtBu)_3)$ complex, considering the carbon atom of the methyl ligand as a chlorine atom. We consider the molecules as discs in dense packing, with a surface density of 0.9069.

R	radius Å	disc surface nm ²	Pt.nm ⁻²
Me	0.37	0,43	2,6
Cl	0.36	0,40	2,8
OSi(OtBu)3	0.60	1,12	1,0
N(SiMe3)2	0.52	0,83	1,3