Supplementary Information

[Fe^{III}(dmphy)(CN)₄] : a new building block for designing single-chain magnets

Luminita Marilena Toma, Jorge Pasán, Catalina Ruiz-Pérez, Francesc Lloret, and Miguel Julve

Tabla S1. Selected ac magnetic data for 5

T/K	$\chi_{T(A)} / \chi_{T(B)}^{a}$	$\chi_{\mathrm{S(A)}} / \chi_{\mathrm{S(B)}}^{}\mathrm{b}}$	$\alpha_{\rm (A)} / {\alpha_{\rm (B)}}^{\rm c}$	$-\log \tau_{(A)} / -\log \tau_{(B)}^{d}$
2.0	2.08 / 11.82	0.08 / 0.90	0.445 / 0.641	2.26 /
2.3	2.88 / 13.50	0.05 / 1.20	0.423 / 0.621	2.98 /
2.5	3.72 / 12.00	0.01 / 2.00	0.422 / 0.530	3.34 / 0.23
2.7	6.00 / 17.10	0.00 / 3.00	0.420 / 0.490	3.70 / 0.88
3.0	5.50 / 13.70	0.00 / 3.60	0.325 / 0.440	/ 1.80
3.3	/ 19.00	/ 6.50	/ 0.386	/ 2.80

⁽a) Isothermal and (b) adiabatic susceptibilities and (c) Cole-Cole parameter in the following equation:

$$\chi''(\chi) = \frac{\chi_T - \chi_S}{2 \tan[(1+\alpha)\pi/2]} + \left\{ (\chi' - \chi_S)(\chi_T - \chi') + \frac{(\chi_T - \chi_S)^2}{4 \tan^2[(1+\alpha)\pi/2]} \right\}^{1/2}$$

(d) τ is the relaxation time at each temperature from this Table.

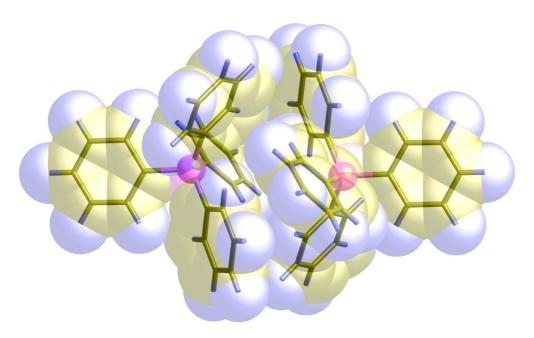
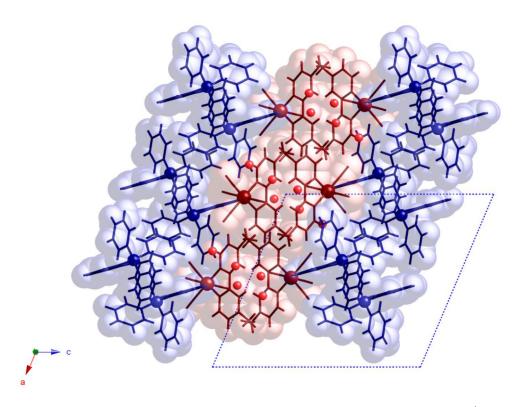
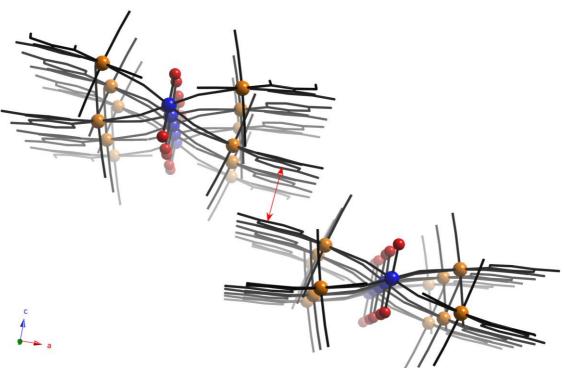
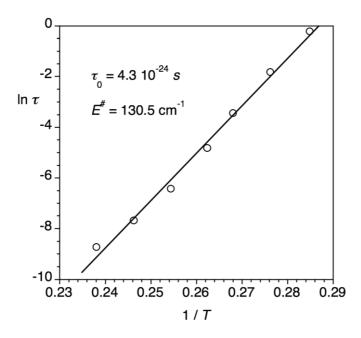



Figure S1. Sextuple phenyl embrace (SPE) interaction involving the PPh₄⁺ cations in 1.

Figure S2. View in the *ac* plan of the double alternative packing of the PPh_4^+ cations and $[Fe(dmbipy)(CN)_4]^-$ anions in 1.

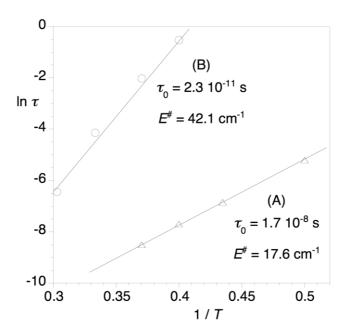

Figure S3. View of two neighbouring chains along the crystallographic b axis showing the shortest π - π interactions between the quasi-eclipsed dmbpy ligands.

Figure S4. Temperature dependence of the *ac* susceptibility for **3** measured at several frequencies (1–901 Hz), where χ_{M} ' and χ_{M} '' are in-phase and out-of-phase susceptibilities, respectively. The solid lines are eye-guides.

Figure S5. Arrhenius plot for **5**: (O) experimental data from de *ac* susceptibility (Figure 9); (—) least-squares fit to the Arrhenius law.

Figure S6. Arrhenius plots for **5**: (O) and (\triangle): experimental data extracted from the Cole-Cole plots (Fig. 10) corresponding to the two different relaxation processes noted A and B (see text).