Supplementary Information

Ytterbium Can Relax Slowly Too : Field induced Yb₂ Single-Molecule Magnet.

Po-Heng Lin,^{*a*} Wen-Bin Sun,^{*b*}* Yong-Mei Tian,^{*b*} Peng-Fei Yan,^{*b*}* Liviu Ungur,^{*c*} Liviu. F. Chibotaru^{*c*}* and Muralee Murugesu^{*a*}*

University of Ottawa, Department of Chemistry, 10 Marie Curie, Ottawa, ON, K1N6N5,

Canada.

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, No.

74, Xuefu Road, Nangang District, Harbin 150080, PR China.

Division of Quantum and Physical Chemistry and INPAC—Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan, 200F, 3001, Belgium.

Preparation of N,N-bis(salicylidene)-*o*-phenylenediamine:

The salen-type ligand, N,N'-bis(salicylidene)-o-phenylenediamine (H₂L), was obtained by using previously reported synthetic methods.ⁱ

Scheme S1. Representation of the salen-type (H₂L) and acac ligands

Figure S1. Partially labelled molecular structure of $[Yb_2L_2(acac)_2(H_2O)]$, **1**. Yb1 is in a distorted square antiprism environment, Yb2 is in a distorted capped trigonal prism environment. Colour code: Yb (yellow), O (red), N (blue) C (grey). H atoms were omitted for clarity.

Figure S2. Crystal packing diagram of complex **1** along the crystallographic *a* axis. The arrow shows the closest intramolecular contact between $Yb2\cdots Yb2a$ (5.94 Å). Colour code: Yb (yellow), O (red), N (blue) C (grey). H atoms were omitted for clarity.

Figure S3. The two hydrogens bonds between two neighboring molecules. Colour code: The two hydrogens bonds between two neighboring molecules. Colour code: Yb (Yellow), O (red), N (blue) C (grey) and Black (H).

Figure S4. The NIR fluorescence of 1 in CH_2Cl_2 (1.0 × 10⁻⁵ M).

Figure S5. The decay curve of excited states for lifetime value of 1 in CH_2Cl_2 at room temperature.

Figure S6. Out-of-phase susceptibility $\chi'' vs$. frequency v in the field range 0 - 3000 Oe for complex 1.

Figure S7. $Ln(\tau)$ *vs.* T^{-1} plot at H_{dc} 1600 Oe representing thermally activated relaxation regime. The solid lines represent an Arrhenius fit of the data.

Computational details

All calculations were done with MOLCAS 7.6 and are of CASSCF/RASSI/SINGLE_ANISO type.

Computational models:

We have employed 2 structural approximations for each fragment Yb1 and Yb2: (A - a reduced fragment of the molecule and B - the entire molecule) and 2 basis set approximations (1 -small and 2-large), resulting in 4 computational approximations for molecule Yb₂ (A1, A2, B1, B2).

Figure S8. Structure of the fragments **A** (right - Yb1, left - Yb2) of the complex Yb₂. Color scheme: Yb - violet, La – light turquase, N – blue, O – red, C – grey, H – white.

Table S1. Contractions of the employed basis sets in computational approximations **1** and **2**.

Basis 1	Basis 2
Yb.ANO-RCC7s6p4d3f1g.	Yb.ANO-RCC8s7p5d4f2g1h.
La.ECP.deGraaf.0s.0s.0e-La(LaMnO3).	La.ECP.deGraaf.0s.0s.0e-La(LaMnO3).
Lu.ANO-RCC7s6p4d3f1g.	Lu.ANO-RCC7s6p4d3f1g.
O.ANO-RCC3s2p1d. (close)	O.ANO-RCC4s3p2d. (close)
O.ANO-DK3.Tsuchiya.12s8p.2s1p. (distant)	O. ANO-RCC3s2p. (distant)
N.ANO-RCC3s2p1d. (close)	N.ANO-RCC4s3p2d. (close)
N.ANO-DK3.Tsuchiya.12s8p.2s1p. (distant)	N.ANO-RCC3s2p. (distant)
C.ANO-DK3.Tsuchiya.12s8p.2s1p.	C.ANO-RCC3s2p.
H. ANO-DK3.Tsuchiya.6s.1s.	H.ANO-RCC2s.

Active space of the CASSCF method included 13 electrons in 7 orbitals (4*f* orbitals of Yb^{3+} ion).

We have mixed 7 (all) doublet states by spin-orbit coupling.

On the basis of the resulting spin-orbital multiplets SINGLE_ANISO program computed local magnetic properties (g-tensors, magnetic axes, local magnetic susceptibility, etc.) The program POLY_ANISO computed the exchange spectrum and the magnetic properties of the dimer.

Table S2. Energies (cm^{-1}) and g tensors of the lowest Kramers doublets (KD).

KD		A1		A2		B1		B2	
		E	g	E	g	E	g	E	g
1	gx gy gz	0.000	0.7535 1.8032 5.5557	0.000	0.7981 1.7566 5.5748	0.000	0.9589 1.8002 6.1164	0.000	0.9928 1.8549 5.9508
2	gx gy gz	167.350	0.4490 1.4623 5.4069	176.508	1.3024 2.5822 4.1061	190.491	1.3521 2.3911 3.8016	189.051	1.6832 2.0574 4.0340
3	gx gy gz	193.747	0.4103 1.1712 5.3322	210.833	0.5872 1.4094 6.4771	281.227	0.3459 0.7774 5.9109	287.500	0.0547 0.8393 6.4418
4	gx gy gz	353.267	0.1508 0.3557 7.5950	368.142	0.1088 0.2797 7.6600	366.083	0.3383 0.5861 7.0809	368.463	0.2371 0.5015 7.2326

Center Yb1:

Center Yb2:

KD		A1		A2		B1		B2	
		E	g	E	g	E	g	E	g
1	gx gy gz	0.000	0.1586 1.2241 6.7491	0.000	0.2079 0.9301 7.1406	0.000	0.3516 1.0588 7.0683	0.000	0.3852 0.9707 7.1998
2	gx gy gz	239.769	3.7271 3.2701 0.1948	310.566	4.0783 2.9533 0.2906	292.947	4.6849 3.2959 1.0972	336.958	4.4380 3.3772 1.3410
3	gx gy gz	353.371	0.4871 1.7251 5.1016	430.746	0.9129 1.9830 5.9542	485.888	0.0897 1.0006 6.0237	539.921	0.2195 1.2105 6.1096
4	gx gy gz	595.182	0.0646 0.1815 7.7980	664.731	0.0277 0.0988 7.8212	591.200	0.4713 0.9833 7.2086	645.598	0.4504 1.1120 7.1132

cente	mode	1	cente	r Yb1		center Yb2			
r	1	A1	A2	B1	B2	A1	A2	B1	B2
	A1					135.67	136.76	135.00	135.67
		0.000	0.391	28.040	25.887	5	3	3	8
	42					135.32	136.41	134.65	135.32
Vh1	AZ	0.391	0.000	28.379	26.228	5	8	1	8
101	D1					163.60	164.77	162.86	163.59
	B1	28.040	28.379	0.000	2.167	2	3	2	0
	B2					161.49	162.63	160.77	161.48
		25.887	26.228	2.167	0.000	7	8	5	9
	A1	135.67	135.32	163.60	161.49				
		5	5	2	7	0.000	1.584	0.948	0.150
	A2	136.76	136.41	164.77	162.63				
Yb2		3	8	3	8	1.584	0.000	2.531	1.693
	D1	135.00	134.65	162.86	160.77				
	DI	3	1	2	5	0.948	2.531	0.000	0.851
	P 2	135.67	135.32	163.59	161.48				
	В2	8	8	0	9	0.150	1.693	0.851	0.000

Table S3. Angles between the g_Z axes of the lowest Kramers doublets (KD) in all computational models (degrees).

Table S4. Energies and the corresponding tunneling gaps of the lowest 4 exchange doublet states of the complex Yb_2 .

A1		A2		В	1	B2	
energy	Δ_{t}	energy	Δ_{t}	energy	Δ_{t}	energy	Δ_{t}
0.00000000 0.01485504	1.4855E-02	0.00000000 0.01159313	1.1593E-02	0.00000000 0.01282147	1.2821E-02	0.00000000 0.01189421	1.1894E-02
0.12655795 0.14729532	2.0737E-02	0.13602336 0.15357224	1.7549E-02	0.15408078 0.17536270	2.1282E-02	0.15445619 0.17542771	2.0972E-02
167.34771880 167.37159324	2.3874E-02	176.52952647 176.57500080	4.5474E-02	190.52159106 190.56716357	4.5573E-02	189.08635133 189.13064831	4.4297E-02
167.47314081 167.49850140	2.5361E-02	176.58982768 176.64039430	5.0567E-02	190.58279051 190.63472791	5.1937E-02	189.13857178 189.19102023	5.2448E-02

i (a) C. Subrahmanyam, M. Seshasayee and G. Aravamudan, G. *Cryst. Struct. Commun.* 1982, **11**, 1719. (b) K. Ambroziak, Z. Rozwadowski, T. Dziembowska, and B. J. Bieg, *Mol. Struct.* 2002, **615**, 109.