Electronic Supplementary Information for

Trans [O=Re^V-OH] Core Stabilised by Chelating N-Heterocyclic Dicarbene Ligands

Regina Lum, Hu Zhang, Wenhua Zhang, Shi-Qiang Bai, Jin Zhao and T.S. Andy Hor*

CONTENTS

- 1. Experimental Section
- 2. X-ray crystallography

Table S1 Summary of crystallographic data for complexes 1–3.

Table S2 Selected bond lengths (Å) and angles (°) for complexes 1–3.

3. References

1. Experimental Section

Synthesis of Ag(I) NHC complexes and characterisation

 $L^{Me}Br_2$, $L^{iPr}Br_2$, and $L^{Bn}Br_2$ were synthesized according to literature procedures¹ with modifications. To a solution of $L^{Me}Br_2$, $L^{iPr}Br_2$ or $L^{Bn}Br_2$ (0.59 mmol) in H₂O (8.0 mL), two equivalent of Ag₂O (1.2 mmol) was added in the absence of light. The reaction was stirred at room temperature for $L^{Me}Br_2$ and $L^{iPr}Br_2$, and at 50 °C for $L^{Bn}Br_2$, and stopped when the mixture turned brown. Excess Ag₂O was filtered and residue washed with H₂O. To the reddish brown filtrate, two equivalent of NH₄PF₆ (1.2 mmol) was added and stirred. White precipitate in colourless solution was formed immediately. White precipitate was collected by filtration. The product was washed with H₂O and Et₂O and dried under vacuum. Light grey complexes Ag₂(L^{Me})₂(PF₆)₂, Ag₂(L^{iPr})₂(PF₆)₂, Ag₂(L^{Bn})₂(PF₆)₂ were obtained.

Ag₂(L^{Me})₂(PF₆)₂. Yield: 57%. ¹H NMR (DMSO-*d*₆, 300MHz): δ7.866 and 7.860 (d, 1H, ³J= 1.8Hz, CH=CH), δ7.532 and 7.526 (d, 1H, ³J= 1.8Hz, CH=CH), δ6.61 (b, 1H, NCH₂N), δ3.86 (s, 3H, CH₃). ¹³C NMR (DMSO-*d*₆, 300MHz): δ 124.37 (CH=CH), δ 121.71 (CH=CH), δ 63.14 (NCH₂N), δ 38.57 (CH₃), imidazole NCN not observed.

Ag₂(L^{iPr})₂(PF₆)₂. Yield: 72%. ¹H NMR (DMSO- d_6 , 300MHz): δ7.88 (s, 2H, CH=CH), δ7.74 (s, 2H, CH=CH), δ6.55 (b, 2H, NCH₂N), δ4.61-4.74 (septet, 2H, ³J=6.54Hz, CH(CH₃)₂), δ1.44 and 1.42 (d, 12H, ³J=6.75Hz, CH₃). ¹³C NMR (DMSO- d_6 , 300MHz): δ122.20 (CH=CH), δ120.03 (CH=CH), δ63.86 (NCH₂N), δ54.47 (CH(CH₃)₂), δ23.35 (CH₃), imidazole NCN not observed.

Ag₂(L^{Bn})₂(PF₆)₂. Yield: 64%. ¹H NMR (DMSO- d_6 , 400MHz): δ7.88 (s, 1H, CH=CH), δ7.60 (s, 1H, CH=CH), δ7.28- 7.23 (m, 5H, Ph), δ7.07 (s, 1H, NCH₂N), δ5.21 (s, 2Hs, NCH₂Ph). ¹³C NMR (DMSO- d_6 , 100MHz): δ128.99-δ127.13 (Ph), δ123.55 (CH=CH), δ122.40 (CH=CH), δ63.59 (NCH₂N), δ54.48 (CHPh), imidazole NCN not observed.

Synthesis of complexes 1-3

 $Ag_2L_2(PF_6)_2$ (0.05 mmol) (L = L^{Me}, L^{iPr}, or L^{Bn}) was added to a CH₃CN solution (10.0 mL) of ReOCl₃(PPh₃)₂ (0.05 mmol).² The suspension turned from green-yellow to dirty green and then brown in 20 min. The mixture was stirred for 2 h, then AgCl was filtered off. The reddish brown filtrate was evaporated to dryness under reduced pressure. The crude product was washed with toluene, ethyl acetate and Et₂O to yield [ReO(OH)(L^{Me})₂](PF₆)(ReO₄)] (1), [ReO(OH)(L^{iPr})₂](PF₆)(ReO₄)] (2) or [ReO(OH)(L^{Bn})₂](PF₆)(ReO₄)] (3).

[**ReO(OH)**(L^{Me})₂](**PF**₆)_{1.4}(**ReO**₄)_{0.6} (1): Yield: 92%. ESI-MS: *m*/*z*= 286.14 (100%, [ReO(OH)(L^{Me})₂]²⁺). ¹H NMR (DMSO-d₆, 400MHz): δ7.93 (s, 2H, *CH*=CH), δ7.92 (s, 2H, *CH*'=CH), δ7.76 (s, 2H, CH=CH), δ7.67 (s, 2H, CH=CH'), δ6.76 (s, 2H, NCH₂N), δ6.71 (s, 2H, NCH'₂N), δ3.77 (s, 6H, *CH*₃), δ3.55 (s, 6H, *CH*'₃). ¹³C NMR (DMSO-d₆, 100MHz): δ168.42 (Re-*C*), δ166.68 (Re-*C*') δ125.23 (*C*H=CH), δ124.53 (*C*'H=CH), δ123.50 (CH=*C*H), δ122.76 (CH=*C*'H),

 $\delta 63.91$ (NCH₂N), $\delta 62.97$ (NC'H₂N), $\delta 37.43$ (CH₃), $\delta 36.55$ (C'H₃). FTIR (400-4000cm⁻¹, KBr): 3442cm⁻¹ (OH), 960cm⁻¹ (Re=O), 923cm⁻¹ (ReO₄), 842 and 559cm⁻¹ (PF₆). Analytical calculation for C₁₈H₂₅N₈O_{4.42}P_{1.40}F_{8.38}Re_{1.61}, C: 23.49, H: 2.73, N: 12.17 %. Found, C: 22.27, H: 2.47, N: 11.55 %.

[**ReO(OH)**(L^{iPr})₂](**PF**₆)_{1.4}(**ReO**₄)_{0.6} (2): Yield: 96%. ESI-MS: m/z= 342.07 (90%, [ReO(OH)(L^{iPr})₂]²⁺). ¹H NMR (DMSO-d₆, 400MHz): δ 7.94 (s, 2H, *CH*=CH), δ 7.87 (s, 2H, CH=CH), δ 6.71 (s, 2H, NCH₂N), δ 4.46 (s, 1H, *CH*(CH₃)₂), δ 4.21 (s, 1H, *CH*'(CH₃)₂), δ 1.55 and δ 1.49 (d, 6H, *CH*₃), δ 1.00 and δ 0.97 (d, 6H, *CH*'₃). ¹³C NMR (DMSO-d₆, 100MHz): δ 167.54 (Re-C), δ 123.75 (*C*H=CH), δ 118.73 (CH=CH), δ 63.38 (NCH₂N), δ 52.62 (*C*H(CH₃)₂), δ 51.92 (*C*'H(CH₃)₂), δ 22.34 (*C*H₃), δ 21.60 (*C*'H₃). FTIR (400-4000cm⁻¹, KBr): 3438cm⁻¹ (OH), 963cm⁻¹ (Re=O), 913cm⁻¹ (ReO₄), 842 and 558cm⁻¹ (PF₆). Analytical calculation for C₂₆H₄₁N₈O_{4.37}P_{1.41}F_{8.44}Re_{1.59}, C: 30.15, H: 3.99, N: 10.81 %. Found, C: 30.70, H: 3.83, N: 10.63 %.

 $[\text{ReO}(\text{OH})(\text{L}^{\text{Bn}})_2](\text{PF}_6)_{1.3}(\text{ReO}_4)_{0.7}$ (3): ESI-MS: $m/z = 875.27 (100\%, [\text{ReO}_2(\text{L}^{\text{Bn}})_2]^+).$

X-ray crystallography

Crystallographic measurements were made on a Bruker AXS APEX diffractometer by using graphite-monochromated Mo K α ($\lambda = 0.71073$ Å). The data were corrected for Lorentz and polarization effects with the SMART suite of programs and for absorption effects with SADABS.³ All crystal structures were solved by direct methods and refined on F^2 by full-matrix least-squares techniques with SHELXTL–97 program.⁴ In **1** and **3** the occupancy factors for disordered [PF₆]/[ReO₄] were refined to be 0.70/0.30 and 0.65/0.35 respectively. The H atoms on the OH group were found from difference Fourier map but treated with disordered model with their occupancy factors fixed at 0.50 and O–H bond lengths restrained at 0.85 Å while allowing their thermal parameters to be refined freely. For complex **2**, the occupancy factors for the two disordered [PF₆]/[ReO₄] pairs were refined to be 0.66/0.34 and 0.75/0.25. The H atom from the OH group were located from difference Fourier map with O–H bond lengths restrained at 0.82 Å and thermal parameters (U_{iso(H)}=1.2U_{eq(O)}). All non-hydrogen atoms were refined anisotropically. All other hydrogen atoms were calculated in ideal geometries and refined isotropically. A summary of the key crystallographic data for complexs **1–3** are listed in Table S1 and their selected bond distances and angles are listed in Table S2.

Complex	1	2	3
Empirical formula	$C_{22}H_{31}F_{8.38}N_{10}O_{4.42}P_{1.4}Re_{1.61}$	$C_{26}H_{41}F_{8.44}N_8O_{4.37}P_{1.41}Re_{1.59}$	$C_{50}H_{53}F_{7.8}N_{12}O_{4.8}P_{1.3}Re_{1.7}$
Formula weight	1007.78	1024.92	1378.79
Temperature (K)	223(2)	293(2)	223(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> –1	<i>P</i> 2 ₁	$P 2_1/n$
Unit cell dimensions			
<i>a</i> (Å)	8.3330(5)	9.043(1)	11.6582(6)
<i>b</i> (Å)	9.7967(6)	17.836(2)	11.1157(6)
<i>c</i> (Å)	11.5140(7)	11.784(1)	22.029(1)
α (°)	112.133(1)		
β (°)	97.526(1)	110.328(3)	102.791 (1)
γ (°)	101.004(1)		
Volume (Å ³)	833.13(9)	1782.1(3)	2783.9(3)
Ζ	1	2	2
Density (calculated, Mg/m^3)	2.008	1.931	1.645
Absorption coefficient (mm ⁻¹)	5.996	5.555	3.815
F(000)	484.8	1001	1385.2
Crystal size (mm ³)	$0.50 \times 0.24 \times 0.20$	$0.50 \times 0.34 \times 0.20$	$0.18 \times 0.12 \times 0.10$
θ range for data collection (°)	1.96–27.50	2.17–24.99	1.83–27.50
Reflections collected	10815	10532	19182
Independent reflections	3821 [$R_{\rm int} = 0.0308$]	6224 [$R_{\rm int} = 0.0275$]	6379 [$R_{int} = 0.0523$]
Data/ restraints/ parameters	3821 / 66 / 267	6224 / 126 / 515	6379 / 239 / 380
Goodness of fit on F^2	1.243	1.270	1.108
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0386, wR_2 = 0.0915$	$R_1 = 0.0444, wR_2 = 0.1039$	$R_1 = 0.0611, wR_2 = 0.1285$
R indices (all data)	$R_1 = 0.0407, wR_2 = 0.0925$	$R_1 = 0.0450, wR_2 = 0.1042$	$R_1 = 0.0827, wR_2 = 0.1373$
Largest diff. peak and hole (e.Å ⁻³)	1.248 and -1.356	1.662 and -1.299	1.759 and -0.981

Table S1 Summary of key crystallographic data for complexes 1–3.

	1	2	3
Re(1)-O(1)	1.946(4)	1.779(6)	1.813(4)
Re(1)-O(2)		1.831(7)	
Re(1)-C(1)	2.155(5)	2.17(1)	2.166(7)
Re(1)-C(5)	2.154(4)	2.167(9)	
Re(1)-C(14)		2.164(9)	
Re(1)-C(18)		2.19(1)	
Re(1)-C(12)			2.166(7)
O(1)-Re(1)-O(1A)	180.0(2)		180
O(1)-Re(1)-O(2)		179.6(3)	
O(1)-Re(1)-C(1)	87.7(2)	90.5(3)	90.0(2)
O(1)-Re(1)-C(1A)	92.3(2)		90.0(2)
O(1)-Re(1)-C(5)	89.4(2)	90.4(3)	
O(1)-Re(1)-C(5A)	90.6(2)		
O(1)-Re(1)-C(12)			90.7(2)
O(1)-Re(1)-C(12A)			89.3(2)
O(1)-Re(1)-C(14)		91.4(3)	
O(1)-Re(1)-C(18)		89.6(4)	
O(2)-Re(1)-C(1)		89.5(4)	
O(2)-Re(1)-C(5)		89.2(3)	
O(2)-Re(1)-C(14)		89.0(3)	
O(2)-Re(1)-C(18)		90.4(4)	
C(5)-Re(1)-C(1)	81.4(2)	80.1(3)	
C(5)-Re(1)-C(1A)	98.6(2)		
C(5)-Re(1)-C(18)		100.1(3)	
C(14)-Re(1)-C(1)		99.1(4)	
C(14)-Re(1)-C(18)		80.7(4)	
C(1)-Re(1)-C(12)			81.3(2)
C(1)-Re(1)-C(12A)			98.7(2)
C(5A)-Re(1)-C(5)	180		
C(1A)-Re(1)-C(1)	180		180
C(5)-Re(1)-C(14)		178.0(4)	
C(1)-Re(1)-C(18)		179.8(4)	
C(12A)-Re(1)-C(12)			180.0(3)
Symmetry code A for co	omplex 1 , 1–x, 1–y, –z	; for complex 3: $-x$, $2-y$,	-Z.

Table S2 Selected bond distances (Å) and angles (°) for complexes 1–3.

References

- 1. C. A. Quezada, J. C. Garrison, M. J. Panzner, C. A. Tessier and W. J. Youngs, *Organometallics*, 2004, **23**, 4846-4848.
- 2. N. P. Johnson, C. J. L. Lock, G. Wilkinson, J. L. Booker, and R. J. Thompson, in *Inorganic Syntheses*, John Wiley & Sons, Inc., 1967, pp. 145-148.
- 3. Sheldrick, G. M. SADABS. Program for empirical absorption correction of area detector data, University of Göttingen, Germany (1996).
- 4. SHELXS-97 and SHELXL-97. Programs for crystal structure solution and refinement. University of Göttingen, Germany (1997).