Supporting Information

For

Solution properties of the Ln^{III} complexes of a novel octadentate chelator with rigidified iminodiacetate arms

Lorenzo Tei^[a], Zsolt Baranyai^[b], Claudio Cassino^[a], Marianna Fekete^[a], Ferenc K. Kálmán^[b] and

Mauro Botta*^[a]

^a Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo

Avogadro" Viale T. Michel 11, I-15121, Alessandria, Italy;

^b Department of Inorganic and Analytical Chemistry, University of Debrecen,

H-4010, Debrecen, Egyetem tér 1., Hungary

Contents:

- 1. Protonation and complexation equilibria (p. 2)
- 2. Kinetic studies (p. 4)
- 3. Variable temperature ¹H and ¹³C NMR spectra (p. 9)
- 4. Relaxometric properties (p. 14)

1. Protonation and complexation equilibria

The protonation constants of the ligand are defined by Equation (1):

$$K_{i}^{H} = \frac{[H_{i}L]}{[H_{i-1}L][H^{+}]}$$
(1)

where $i=1, 2 \dots 4$. These were determined by both pH-potentiometric and ¹H-NMR titrations. At different pH values, ¹H NMR signals display sharp changes related to the protonation of the ligand. Since the protonation/deprotonation of the different donor atoms is generally fast process on the NMR time scale, the chemical shifts of the observed signals represent a weighted average of the shifts of the different species involved in a specific protonation step (Eq. 2):

$$\delta_{H(obs)} = \sum x_i \delta_H^{H_i L} \tag{2}$$

where, $\delta_{H(obs)}$ is the observed chemical shift of a given signal, x_i and $\delta_{H}^{H,L}$ are the molar fraction and the chemical shift of the involved species, respectively (the molar fractions x_i of the different protonated species are expressed with the use of the protonation constants K_i^H).

The stability and protonation constants of the metal complexes formed with the chelating ligands **L1** and EGTA are defined by Equations (3) and (4). The best fitting was obtained by using the model which includes the formation of ML and MHL species.

$$K_{\rm ML} = \frac{[\rm ML]}{[\rm M][\rm L]}$$
(3)
$$K_{\rm MH_{iL}} = \frac{[\rm MH_{i}L]}{[\rm MH_{i-1}L][\rm H^{+}]}$$
(4)

where i=1. The titration data for **L1** and EGTA in the presence of Zn^{2+} and Cu^{2+} indicate base consuming process at pH>9. This process can be interpreted by assuming the coordination of OH⁻ ion according to Equation (5):

$$K_{\rm MLH_{,1}} = \frac{[\rm ML]}{[\rm M(OH)L][\rm H^+]}$$
 (5)

pH-potentiometric titrations were also made at 2:1 metal-to-ligand ratio in order to examine the possible formation of dinuclear Zn^{2+} and Cu^{2+} complexes. The stability and protonation constants of the dinuclear-, dinuclear-monohydroxo- and dinuclear-dihydroxo-complexes are defined by Equations (6), (7) and (8), respectively.

$$K_{M_{2}L} = \frac{[M_{2}L]}{[ML][M]}$$
(6)

$$K_{\rm M_2LH_{-1}} = \frac{[\rm M_2L]}{[\rm M_2(OH)L][\rm H^+]}$$
(7)

$$K_{\rm M_2LH_{2}} = \frac{[M_2(\rm OH)L]}{[M_2(\rm OH)_2L][\rm H^+]}$$
(8)

As explained in the text, in the presence and absence of Mg^{2+} ion the shape of the titration curve of **L1** is the same (Figure S1). The fitting of the data obtained in these titrations did not give any reasonable result for the stability constant of the Mg^{2+} complex.

Figure S1. Titration curve of the H₄L1 ligand in the absence (1) and in the presence of Mg²⁺ (2) and Ca²⁺ (3) ([H₄L1]=[Mg²⁺]=[Ca²⁺]=2 mM, [HCl]=16 mM, [KOH]=0.2 M, 0.1 M KCl, 25°C)

2. Kinetic studies

The rates of the transmetallation reactions of $[Gd(L1)]^-$ and $[Gd(EGTA)]^-$ were studied by UVspectrophotometry with the use of Cu²⁺ and Eu³⁺ as exchanging metal ions. In the presence of excess of the exchanging ion the transmetallation can be treated as a pseudo-first-order process and the reaction rate can be expressed with the Eq. (9), where k_d is a pseudo-first-order rate constant, $[GdL]_t$ and $[GdL]_{tot}$ are the concentrations of the GdL species at time *t* and the total concentration of the complex, respectively.

$$-\frac{d[GdL]_{t}}{dt} = k_{d}[GdL]_{tot}$$
⁽⁹⁾

The rates of the transmetallation reactions were studied at different concentrations of the exchanging ions in the pH range 4.0 - 6.3. The obtained rate constants k_d are presented as a function of the pH in Figures S2, S3, S4 and S5.

Figure S2. Pseudo-first order rate constants (k_d) of the metal exchange reactions of $[GdL1]^-$ with Cu²⁺ ions as a function of pH ($[Gd(L1)^-]=0.1 \text{ mM}$, $[Cu^{2+}]=1 \text{ mM}$ (\blacklozenge), 2 mM (\blacksquare), 3 mM (\blacktriangle) and 4 mM (\bullet); 0.1 M KCl, 25 °C)

Figure S3. Pseudo-first order rate constants (\dot{k}_d) of the metal exchange reactions of $[GdL1]^-$ with Eu^{3+} ions as a function of pH ($[Gd(L1)^-]=0.5 \text{ mM}$, $[Eu^{3+}]=10 \text{ mM}$ (\blacklozenge), 15 mM (\blacksquare), 20 mM (\blacktriangle) and 25 mM (\blacklozenge); 0.1 M KCl, 25 °C)

Figure S4. Pseudo-first order rate constants (k_d) of the metal exchange reactions of $[Gd(EGTA)]^-$ with Cu²⁺ ions as a function of pH ($[Gd(EGTA)^-] = 0.1 \text{ mM}$, $[Cu^{2+}] = 1 \text{ mM}$ (\blacklozenge), 2 mM (\blacksquare), 3 mM (\blacktriangle) and 4 mM (\bullet); 0.1 M KCl, 25 °C)

Figure S5. Pseudo-first order rate constants (k_d) of the metal exchange reactions of $[Gd(EGTA)]^-$ with Eu³⁺ ions as a function of pH ($[Gd(EGTA)^-] = 1.0 \text{ mM}$, $[Eu^{3+}] = 20 \text{ mM}$ (\blacklozenge), 30 mM (\blacksquare), 40 mM (\blacktriangle) and 50 mM (\bullet); 0.1 M KCl, 25 °C).

These figures show that k_d values exhibit a similar dependence in the reactions with Cu²⁺ and Eu³⁺. k_d values increase with increase of [H⁺] and also with increasing [Cu²⁺] or [Eu³⁺] at pH > 4.5. The increase in k_d values with increasing H⁺ concentration can be interpreted in terms of proton assisted dissociation of [Gd(L1)]⁻ and [Gd(EGTA)]⁻ followed by a fast reaction between free ligand and exchanging metal ions (Cu²⁺ or Eu³⁺). The dependence of k_d on [H⁺] can be expressed as a first- and second-order function of [H⁺] which indicates that the exchange can take place by proton-independent (Eq. 10) and proton assisted (Eqs. 11 and 12) pathways. The proton assisted dissociation of [Gd(L1)]⁻ and [Gd(EGTA)]⁻ can be explained by the formation of a protonated [Gd(HL1)] and [Gd(HEGTA)] complexes, which dissociate through spontaneous (Eq. 11) and proton-assisted (Eq. 12) pathways.

$$GdL \xrightarrow{k_0} Gd^{3+} + H_xL$$
 (10)

$$Gd(HL) \xrightarrow{k_{GdHL}} Gd^{3+} + H_xL$$
(11)

$$Gd(HL) + H^+ \xrightarrow{k_{GdHL}^H} Gd^{3+} + H_xL$$
 (12)

The increase in exchange reaction rate with increasing $[Cu^{2+}]$ or $[Eu^{3+}]$ indicates that the reaction can take place by direct attack of the exchanging metal ion to the complex, via formation of dinuclear intermediates (Eq. 13).

$$\begin{array}{ccc} & & & \\ GdL &+ & M^{n+} & \rightleftharpoons & [Gd(L)M] \end{array}$$

$$K_{GdLM} = \frac{[Gd(L)M]}{[Gd(L)][M^{n+}]}$$
(13)

It can be assumed that in the dinuclear intermediate [Gd(L)M], the functional groups of L1 and EGTA are slowly transferred from the Gd^{3+} to the attacking Cu^{2+} or Eu^{3+} step by step (Eq. 14).

$$[Gd(L)M] \xrightarrow{k_{GdLM}} Gd^{3+} + ML$$
 (14)

At pH < 4.5, the exchanging metal ions attack the protonated [Gd(HL1)] and [Gd(HEGTA)]. In case of protonated and dinuclear complexes, the functional groups of L1 and EGTA are weekly coordinated to the Gd³⁺ ion and they slowly transfer from the Gd³⁺ to the attacking Cu²⁺ and Eu³⁺ ions (Eq. 15).

$$Gd(HL) + M^{n+} \xrightarrow{k_{GdLM}^{H}} Gd^{3+} + ML + H^{+}$$
(15)

The k_0 , k_{GdHL} , k_{GdHL} , k_{GdLM} and $k_{\text{GdLM}}^{\text{H}}$ rate constants characterize the dissociation of $[\text{Gd}(\text{L1})]^{-}$ and $[\text{Gd}(\text{EGTA})]^{-}$ via spontaneous, proton-assisted, metal-assisted and proton-metal-assisted (when the exchanging metal attacks the protonated complexes) reaction pathways, respectively. The K_{GdHL} and K_{GdLM} are the protonation constants of the protonated complexes and the stability constant of the mixed dinuclear intermediate complexes, respectively (where $K_{\text{GdHL}}=[\text{Gd}(\text{HL})]/[\text{Gd}(\text{L})][\text{H}^+]$, $K_{\text{GdLM}}=[\text{Gd}(\text{L})\text{M}]/[\text{Gd}(\text{L})][\text{M}]$. The protonation constant of the $[\text{Gd}(\text{L1})]^-$ and $[\text{Gd}(\text{EGTA})]^-$ complexes were determined by pH-potentiometric titration ($[\text{Gd}(\text{L1})]^-$: $\log K_{\text{MHL}}= 3.07$; $[\text{Gd}(\text{EGTA})]^-$: $\log K_{\text{MHL}}= 1.89$ in Table 2) and used for the calculation of the kinetic parameters.

By taking into account all the possible pathways and the rate of the transmetallation of $[Gd(L1)]^-$ and $[Gd(EGTA)]^-$ (Eq. 9), the pseudo-first-order rate constant (k_d) can be defined by Equation (16).

$$-\frac{[GdL]_{t}}{dt} = k_{0}[GdL] + k_{GdLH}[Gd(HL)] + k_{GdHL}^{H}[Gd(HL)][H^{+}] + k_{GdLM}[Gd(L)M] + k_{GdLM}^{H}[Gd(HL)][M]$$
(16)

By taking into account the total concentration of the complex $([GdL]_{tot} = [GdL] + [Gd(HL)] + [Gd(L)M])$ and the equations of protonation and stability constants of the intermediates (K_{GdHL} and K_{GdLM}), the pseudo-first-order rate constant can be expressed as follows:

$$k_{\rm d} = \frac{k_0 + k_1 [{\rm H}^+] + k_2 [{\rm H}^+]^2 + k_3 [{\rm M}^{\rm n+}] + k_4 [{\rm M}] [{\rm H}^+]}{1 + K_{\rm GdHL} [{\rm H}^+] + K_{\rm GdLM} [{\rm M}]}$$
(17)

where, k_0 , and $k_1 = k_{\text{GdHL}} \cdot K_{\text{GdHL}}$, $k_2 = k_{\text{GdHL}}^{\text{H}} \cdot K_{\text{GdHL}}$, $k_3 = k_{\text{GdLM}} \cdot K_{\text{GdLM}}$ and $k_4 = k_{\text{GdLM}}^{\text{H}} \cdot K_{\text{GdHL}}$ characterize the spontaneous, proton-, metal- and proton-metal-assisted dissociation of $[\text{Gd}(\text{L1})]^-$ and $[\text{Gd}(\text{EGTA})]^-$, respectively. Rate constants, protonation and stability constants have been calculated by fitting the k_d values to the Eq. (17). Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

3. Variable temperature ¹H and ¹³C NMR spectra

Figure S6. VT ¹H NMR spectra for $[La(L1)]^{-}$ at 9.4 T.

Figure S7. VT ¹³C NMR spectra for $[La(L1)]^{-}$ at 9.4 T.

Figure S8. VT ¹H NMR spectra for $[Lu(L1)]^{-}$ at 9.4 T.

Figure S9. VT 13 C NMR spectra for $[Lu(L1)]^{-}$ at 9.4 T.

Figure S10. VT ¹³C NMR spectra for $[Y(L1)]^-$ at 9.4 T; magnification of the region of the –CH carbons.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

4. Relaxometric properties

Figure S11. Variation of the relaxation rate, at 20 MHz and 298 K, of a 0.8 mM solution of L1 following stepwise additions of a stock solution of $Gd(NO_3)_3$. A large and non linear increase of R_1 indicates that the Gd/L1 ratio is higher than one. In that case a further small addition of ligand restores the 1:1 molar ratio and the R_1 value returns to the straight line. The slope of the line (5.2 mM⁻¹ s⁻¹; R=0.9998) corresponds to the r_{1p} value of $[Gd(L1)]^{-1}$.

Figure S12. Plot of R_1 of $[Gd(L1)]^-$ on pH variation (20 MHz, 298 K).