Supplementary Material

Fig. S3. Band fit of the O-H band of HOD/D₂O (~5 % HDO).

Figure S4. The baseline corrected, isotropic Raman mode of the symmetric stretch of Ca-O, v_1 Ca-O of an aqueous 2.667 mol·L⁻¹ Ca(ClO₄)₂ solution. The lower panel presents the residual curve of the difference between the measured and the fitted spectrum of v_1 Ca-O.

Table S1

mode (T _h)			skeletal CaO ₆ modes (O _h)	Ca(OH ₂) ₆ ²⁺		$Ca(OD_2)_6^{2+}$		
				frequ. (cm ⁻¹)	assign- ment	frequ. (cm ⁻¹)	assign- ment	$r = \frac{\nu_{Ca(OH_2)_6^{2+}}}{\nu_{Ca(OD_2)_6^{2+}}}$
1	f_u	i.r.	$\nu_6(f_{2u})$ -	39.9	δCaO_6	36.4	δ CaO ₆	1.100
2	fg	Ra	$v_5(f_{2g})$ Ra	67.7	δCaO_6	61.7	δ CaO ₆	1.100
3	f_u	i.r.	v ₃ (f _{1u}) i.r	77.9	δCaO_6	71.9	δ CaO ₆	1.083
4	eg			83.0	τHOH	58.7	τDOD	1.414
5	f_g	Ra		137.8	τHOH	98.3	τDOD	1.402
6	ag	-		207.1	τHOH	146.5 τ DOD		1.414
7	eg	Ra	$v_2(e_g)$ Ra	262.3	v _s CaO ₆	248.6	v _s CaO ₆	1.055
8	f_g	Ra		270.8	ω H-O-H	208.7	ωDOD	1.298
9	$\mathbf{f}_{\mathbf{u}}$	i.r.		271.2	ω H-O-H	210.9	ωDOD	1.286
10	ag	Ra	$v_1(a_{1g})$ Ra	285.8	v _s CaO ₆	271.2	v _s CaO ₆	1.054
11	f_u	i.r.	$v_4(f_{1u})$ i.r	341.7	$v_{as} CaO_6$	306.1	$v_{as} CaO_6$	1.120
12	f_g	Ra		424.9	р НОН	319.3	ρDOD	1.331
13	$\mathbf{f}_{\mathbf{u}}$	i.r.		433.9	р НОН	353.7	ρ DOD	1.227
14	$\mathbf{f}_{\mathbf{u}}$	i.r.		1623.5	δHOH	1190.0	δDOD	1.364
15	eg	Ra		1623.5	δHOH	1189.8	δDOD	1.364
16	ag	Ra		1626.2	δ ΗΟΗ	1191.2	δDOD	1.365
17	eg	Ra		3730.2	$\nu_{s} OH$	2687.0	$v_s OD$	1.388
18	f_u	i.r.		3731.2	ν_{s} OH	2687.5	$v_{s}OD$	1.388
19	ag	Ra		3735.9	$\nu_{s} OH$	2689.7	$v_{s}OD$	1.388
20	f_g	Ra		3800.9	$\nu_{as} OH$	2785.0	$v_{as}OD$	1.365
21	fu	i.r.		3800.9	$v_{as}OH$	2785.1	$v_{as}OD$	1.365

DFT frequencies at the B3LYP/ 6-311+G(d,p) level of theory for the hexahydrate of Ca^{2+} , $Ca(OH_2)_6^{2+}$ and $Ca(OD_2)_6^{2+}$ with additional solvation shell (PCM model) symmetry T_h

isotopic frequency shift:

An important indicator of the frequency mode and its symmetry is given by comparison of the vibrational frequencies in deuterated and undeuterated solutions.

For the cluster $[Ca(OH_2)_6]^{2+}$ and $[Ca(OD_2)_6]^{2+}$ this ratio *r* is given in the last row of Table S1 For the modes identified as skeletal modes, the water molecules do not vibrate.

The lowest values with about 1.055 are obtained for the symmetric stretching vibrations of the cluster. For these modes the water molecules translate along the Ca – O bond stretching, the ratio *r* is determined by the mass ratio D/H and can be obtained using equ. (7). The other skeletal modes involve in addition rotations of the water molecules and the ratio r also depends on the different moments of inertia of the undeuterated/deuterated cluster ions. Whereas for the skeletal deformation modes (modes 1-3) the water molecules rotate around axes through the Ca²⁺ ion , the largest ratios *r* are obtained for twist movements of the water molecules around the fixed skeletal Ca – O axes (modes 4-6).

Table S2

frequ.	symm.		mode		symm.		mode
cm ⁻¹				cm ⁻¹			
30.6	F	Ra	rot. $(H_2O)_3$	562.7	А	Ra	τ, ρ ΗΟΗ
34.2	А	Ra	rot. $(H_2O)_3$	577.2	А	Ra	τ, ρ ΗΟΗ
42.3	Е	Ra	trans. $(H_2O)_3$	600.6	F	i.r. Ra	ω, ρ ΗΟΗ
53.5	F	i.r. Ra	trans. $(H_2O)_3$, CaO ₆	666.0	F	i.r. Ra	ωHOH
75.3	F	i.r. Ra	rot. (H ₂ O) ₃ ,CaO ₆	682.5	Е	Ra	ω, τ ΗΟΗ
84.0	F	i.r. Ra	rot. (H ₂ O) ₃ ,CaO ₆	710.5	F	i.r. Ra	ω, τ ΗΟΗ
93.0	F	i.r. Ra	rot. $(H_2O)_3 + \delta CaO_6$	756.4	F	i.r. Ra	р НОН
123.1	Е	Ra	rot. $(H_2O)_3 + v_{as} CaO_6$	790.8	F	i.r. Ra	р НОН
131.7	F	i.r. Ra	trans. $(H_2O)_3 + \delta CaO_6$	866.3	F	i.r. Ra	ωΗΟΗ
139.8	А	Ra	trans. $(H_2O)_3$	867.0	А	Ra	ωHOH
147.1	F	i.r. Ra	trans. $(H_2O)_3 + \delta CaO_6$	1635.1	F	i.r. Ra	δΗΟΗ
154.7	F	i.r. Ra	trans. $(H_2O)_3 + \delta CaO_6$	1635.2	Е	Ra	δΗΟΗ
183.2	F	i.r. Ra	trans. $(H_2O)_3 + \delta CaO_6$	1635.9	F	i.r. Ra	δΗΟΗ
184.2	Е	Ra	trans. $(H_2O)_3$	1637.0	F	i.r. Ra	δΗΟΗ
204.6	F	i.r. Ra	trans. $(H_2O)_3$	1637.9	А	Ra	δΗΟΗ
207.1	А	Ra	trans. $(H_2O)_3$	1698.0	Е	Ra	δΗΟΗ
229.8	F	Ra	δ CaO ₆ + trans. (H ₂ O) ₃	1701.2	F	i.r. Ra	δΗΟΗ
237.6	F	i.r. Ra	δ CaO ₆ + trans. (H ₂ O) ₃	1712.0	А	Ra	δΗΟΗ
287.7	Е	Ra	$v_{as} CaO_6$	3571.9	Е	Ra	v _s OH
305.3	А	Ra	$v_s CaO_6$	3578.9	F	i.r. Ra	v _s OH
345.8	F	i.r. Ra	ρНОН	3594.1	А	i.r. Ra	v _s OH
348.1	F	i.r. Ra	$v_{as} CaO_6 + \rho HOH$	3595.0	F	i.r. Ra	v _s OH
361.0	Е	Ra	ρΗΟΗ	3607.9	F	i.r. Ra	v _s OH
361.6	F	i.r. Ra	$v_{as} CaO_6 + \rho HOH$	3615.3	А	i.r. Ra	v _s OH
408.0	F	i.r. Ra	ρΗΟΗ	3641.7	F	i.r. Ra	$v_{s}OH + v_{as}OH$
437.6	А	i.r. Ra	ωΗΟΗ	3659.0	Е	Ra	v _s OH
447.4	F	i.r. Ra	р НОН	3669.5	F	i.r. Ra	$v_{s}OH + v_{as}OH$
476.6	F	i.r. Ra	ρHOH	3675.1	F	i.r. Ra	$v_{s}OH + v_{as}OH$
483.2	Е	Ra	ρHOH	3852.8	F	i.r. Ra	v _{as} OH
522.0	F	i.r. Ra	τHOH	3853.3	F	i.r. Ra	v _{as} OH
525.5	F	i.r. Ra	τНОН	3853.4	Е	Ra	v _{as} OH
526.9	Е	Ra	τНОН	3857.0	F	i.r. Ra	v _{as} OH
540.6	F	i.r. Ra	τ, ρ ΗΟΗ	3857.6	А	Ra	v _{as} OH

DFT frequencies at the B3LYP/ 6-311+G(d,p) level of theory for the octadecahydrate $Ca(OH_2)_{18}$ ²⁺ or better written as $[Ca(OH_2)_6(OH_2)_{12}]^{2+}$ with symmetry T.

Table S3 DFT geometrical parameters from DFT caclulations at the B3LYP/ 6-311+G(d,p) level for the octadecahydrate Ca(OH₂)₁₈]²⁺ or better written as $[Ca(OH_2)_6(OH_2)_{12}]^{2+}$ with symmetry T.

structural parameter	$Ca(OH_2)_{18}^{2+}$
Ca - O (inner sphere) (Å)	2.383
O - H (inner sphere) (Å)	0.975
H-O-H (inner sphere) (°)	108.02
Ca - O (outer sphere) (Å)	4.475
O - H(A) (outer sphere) (Å)	0.965
O - H(B) (outer sphere) (Å)	0.975
H-O-H (outer sphere) (°)	106.94
HOH bond length (Å)	1.879

Table S4

DFT frequencies at the HF/ 6-311+G(d,p) level of theory for the cluster $\left[Ca(OH_2)_5Cl\right]^+,$ symmetry $C_{2\nu}$

vibration			freq.	mode	vibration		freq.	mode	
			cm ⁻¹				cm ⁻¹		
			UIII				•		
1	B_1	i.r. Ra	60.1	δOCaCl	24	A_2	Ra	565.0	р НОН
2	B_2	i.r. Ra	64.5	δOCaCl	25	B ₂	i.r. Ra	584.5	ωHOH
3	B ₂	Ra	80.3	δOCaO	26	B ₁	i.r. Ra	585.1	ωHOH
4	B ₂	i.r. Ra	93.4	δOCaO	27	B ₁	i.r. Ra	592.1	р НОН
5	B ₁	i.r.Ra	94.4	δOCaO	28	B ₂	i.r. Ra	595.5	р НОН
6	A_1	i.r. Ra	104.8	δOCaO	29	A_1	i.r. Ra	619.6	ωHOH
7	B ₁	i.r.Ra	114.1	δOCaO	30	A_1	i.r. Ra	635.6	р НОН
8	B ₂	i.r.Ra	116.3	δOCaO	31	A_2	Ra	1783.9	δНОН
9	A_1	i.r. Ra	118.9	δOCaO	32	B ₁	i.r. Ra	1786.0	δНОН
10	A ₁	i.r. Ra	209.3	v _s OCaCl	33	B ₂	i.r. Ra	1786.3	δНОН
11	A_2	Ra	215.6	v_{s} OCaO	34	A_1	i.r. Ra	1796.6	δНОН
12	A ₁	i.r.Ra	242.1	v _s OCaCl	35	A_1	i.r. Ra	1807.2	δНОН
13	B_1	i.r. Ra	292.3	v_{as} OCaO	36	A_2	Ra	3972.7	$v_s OH$
14	B ₂	i.r. Ra	292.8	v_{as} OCaO	37	B ₁	i.r. Ra	3974.7	$v_s OH$
15	A ₁	i.r.Ra	310.0	vas OCaCl	38	B ₂	i.r. Ra	3974.8	$v_s OH$
16	A_2	Ra	339.5	τHOH	39	A_1	i.r. Ra	3980.0	$v_{s}OH$
17	A_2	Ra	366.6	τHOH	40	A_1	i.r. Ra	4001.5	$v_s OH$
18	A_1	i.r. Ra	391.4	τHOH	41	B ₂	i.r. Ra	4078.0	$v_{as}OH$
19	B ₁	i.r. Ra	394.1	τHOH	42	A_2	Ra	4094.5	$v_{as}OH$
20	A_1	i.r. Ra	421.3	τ HOH	43	B_2	i.r. Ra	4095.0	$v_{as} OH$
21	A_2	Ra	511.4	ωHOH	44	B ₁	i.r. Ra	4095.1	$v_{as} OH$
22	B ₁	i.r. Ra	531.6	ωHOH	45	A_1	i.r. Ra	4097.2	$v_{as}OH$
23	B ₂	i.r. Ra	541.6	ρHOH					

Table S5. Structural parameters for the cluster from DFT calculations at the HF/ 6-311+G(d,j	p)
level of theory for the cluster $[Ca(OH_2)_5Cl]^+$; symmetry C_{2v} .	

bond length		angle				
(in Å)		(deg)				
Ca – Cl	2.6789	O(2)- Ca - Cl	81.17			
Ca – O(4)	2.4650	O(2)-Ca - O(5)	89.13			
Ca – O(2,3,5,6)	2.4518	H(7)- O(2)- H(8)	107.40			
O(3) –H(9)	0.9553	H(11)- O(4)- H(12)	106.09			
O(3) –H(10)	0.9500	Ca - O(2) - H(7)	106.24			
O(4) –H(11)	0.9526					