Supporting Information

Quantum chemical studies on the enantiomerization mechanism of several $[Zn(py)_3(tach)]^{2+}$ derivates

Ralph Puchta,^{A,B}* Basam M. Alzoubi,^{A,C} Roland Meier,^A Sabah I. Almuhtaseb,^D Markus Walther^{A,B} and Rudi van Eldik^A

Figure S4. Calculated (RB3LYP/LANL2DZp) Δ distance for the ground and transition states of the complexes $[Zn(py_3tach-X)]^{2+}$ (X = C, Si, Ge, N, P, As O, S and Se) versus electronegativity (Pauling scale).

•: $\Delta(H_{py}$ --- H_{py}), **•**: $\Delta(N_{py}$ --- N_{py}).

Figure S5. Calculated (RB3LYP/LANL2DZp) Δ difference for the ground and transition state of the complexes $[Zn(py_3tach-X)]^{2+}$ (X = C, Si, Ge, N, P, As O, S and Se) versus atomic size (Å).

•: $\Delta(H_{py}$ --- H_{py}), **•**: $\Delta(N_{py}$ --- N_{py}).