Supporting Information

Zn(II), Cd(II) and Cu(II) complexes of 2,5–bis{N–(2,6–diisopropyl phenyl)iminomethyl}pyrrole: synthesis, structures and their high catalytic activity for efficient cyclic carbonate synthesis from epoxides and CO₂ at atmospheric pressure

Heeralal Vignesh Babu and Krishnamurthi Muralidharan*

School of Chemistry, University of Hyderabad, Hyderabad - 500046, India.

Table of Contents

Crystallographic data for complexes 3a and 5a	S 2
Crystal Structure of 3a	S 3
Crystal Structure of 3b	S 4
Crystal Structure of 5a	S 5
Crystal Structure of 5b	S 6
Spectra of complexes 3a, 3b, 5a and 5b	S 7
Spectra of Cyclic carbonates	S17

Parameters	3a	5a
Empirical formula	C ₆₀ H ₇₆ N ₆ Zn	$C_{61}H_{80}CdN_6O$
Formula weight	946.64	1025.71
Crystal System	Monoclinic	Orthorhombic
Space group	P2(1)/n	Pnma
a (Å)	10.559	19.145
b (Å)	21.306	21.378
c (Å)	24.365	14.170
α (deg)	90	90
β (deg)	97.43	90
γ (deg)	90	90
Volume $(\text{\AA})^3$	5435.2	5799.7
Temperature (K)	100(2)	100(2)
Ζ	4	4
$\mu \text{ mm}^{-1}$	0.494	0.419
D (calcd.) (g/cm^3)	1.157	1.175
F(000)	2032	2176
Crystal size (mm)	$0.16 \times 0.12 \times 0.10$	$0.22 \times 0.18 \times 0.14$
θ range (deg)	1.27 to 25.05	1.72 to 25.07
Index ranges	-12<=h<=12	-22<=h<=22
	-21<=k<=25	-25<=k<=25
	-29<=l<=26	-16<=l<=16
Reflections collected	24621 / 9522	54127 / 5296
/ unique	$R_{int} = 0.0807$	$R_{int} = 0.0534$
Data completeness	98.9 %	99.9 %
Transmission	0.9522 / 0.9251	0.9436/0.9134
(max/min)		
Data / restraints /	9522 / 0 / 652	5296 / 0 / 366
parameters		
Goodness-of-fit on F ²	1.075	1.161
Final R indices	$R_1 = 0.0720$	$R_1 = 0.0440$
[I>2sigma(I)]	$wR_2 = 0.1685$	$wR_2 = 0.0984$
R indices (all data)	$R_1 = 0.0946$	$R_1 = 0.0472$
	$wR_2 = 0.1825$	$wR_2 = 0.1003$
Largest diff. peak /	0.749/-0.399	0.583 / -0.459
hole, e Å ⁻³		

Table S1 Crystallographic data for complexes 3a, 3b, 5a and 5b

Crystal Structure of 3a

Fig. S1 ORTEP of molecular structure of **3a**. Thermal ellipsoids are shown at 30% probability levels. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Zn1-N2 = 1.971(3), Zn1-N1 = 2.097(3), Zn1-N5 = 1.996(3), Zn1-N4 = 2.054(3), N2-Zn1-N1 = 82.55(12), N4-Zn1-N1 = 116.93(12), N5-Zn1-N4 = 84.00(11), N2-Zn1-N5 = 111.04(12), N5-Zn1-N1 = 117.46(12), N2-Zn1-N4 = 147.48(12), C9-C8-C7 = 133.2(4), C10-C11-C12 = 128.2(4), C7-N1-C6 = 117.7(3), C12-N3-C13 = 119.5(3), C42-N6-C43 = 118.1(3), C40-C41-C42 = 128.6(3), C39-C38-C37 = 132.5(3), C37-N4-C36 = 116.7(3).

Fig. S2 ORTEP of molecular structure of **3b**. Thermal ellipsoids are shown at 30% probability levels. Hydrogen atoms are omitted for clarity.

Crystal Structure of 5a

Fig. S3 ORTEP of molecular structure of **5a**. Thermal ellipsoids are shown at 30% probability levels. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Cd1–N2 = 2.271(3), N5–Cd1 = 2.716(3), Cd1–N4 = 2.149(3), N6–Cd1 = 2.716(3), Cd1–N1 = 2.275(3), Cd1–O1 = 2.336(3), N2–Cd1–N1 = 76.37(10), N1–Cd1–O1 = 85.08(11), N4–Cd1–O1 = 94.68(11), N4–Cd1–N2 = 103.87(10), N4–Cd1–N5 = 67.62, N4–Cd1–N6 = 67.62, N5–Cd1–N6 = 135.09, N6–Cd1–O1 = 90.12, N6–Cd1–N1 = 112.38, N6–Cd1–N2 = 96.86, C7–C6–C5 = 128.97, C8–C9–C10 = 127.1(3), C5–N1–C4 = 116.4(3), C10–N3–C11 = 128.5(3), C29–C28–C27 = 132.4(2), C27–N5–C26 = 118.0(2), N4–Cd1–N1 = 179.76(10), N2–Cd1–O1 = 161.45(11).

Crystal Structure of 5b

Fig. S4 ORTEP of molecular structure of **5b**. Thermal ellipsoids are shown at 30% probability levels. Hydrogen atoms are omitted for clarity.

FLASH EA 1112 SERIES CHN REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

Element Name	Element %	Ret. Time
Nitrogen	8. 75	0. 78
Carbon	76. 32	1, 16
Hydrogen	7.96	3. 74

(OSM

FLASH EA 1112 SERIES CHN REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

Element Name	Element %	Ret. Time
Nitrogen	8.36	0. 74
arbon	72. 45	1. 13
Hydrogen	7. 78	3.83

S12

(By

FLASH EA 1112 SERIES CHN REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

FLASH EA 1112 SERIES CHN REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

LCMS-2010A DATA REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

HRMS — 8

LCMS-2010A DATA REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

LCMS-2010A DATA REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

-155.100

-19.374

S31

HRMS — 13c

S43

HRMS — 13f

Display Report						
Analysis Info Analysis Name Method Gample Name Comment	D:\Data\2012\Dr.K.I tune_low_Pos.m KPK-V1-DCM-ACN	Muralidharan\FEB\KPK-V1	.d	Acquisition Date Operator Instrument	2/7/2012 3:38 UOH maXis	57 PM 10138
ource Type occus can Begin can End	ameter ESI Not active 50 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3800 V -500 V 350.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	er 0.3 E er 180 ' 4.0 l/ l/ve Was	Bar °C Imin te
Intens.					+MS, 0.	1-0.6min #(6-3
1.50-					165.0	551
1.25-						
1.00-						
0.75-						
0.50-						
0.25						
				143.0723 15	3.1407	
0.00	80	100	120	140	160	<u> </u>