-Supporting Information for-

Tetrahydrofuran Ring Opening and Related Reactions with Lewis Acidic N-Heterocyclic Carbene-Boryl Trifluoromethanesulfonate

Andrey Solovyev,^a Emmanuel Lacôte,^{b,c}* and Dennis P. Curran^a*

^a Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA

^b Université de Lyon, Institut de chimie de Lyon, UMR 5265 CNRS-Université Lyon I-

ESCPE Lyon, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France

^c UPMC Univ Paris 06, Institut Parisien de chimie Moléculaire, UMR CNRS 7201, 4

Place Jussieu, 75005 Paris, France

emmanuel.lacote@univ-lyon1.fr, curran@pitt.edu

Table of Contents

General Remarks	
Experimental Procedures and Compound Characterization	S3
References	S16
Copies of NMR Spectra	S17

General Remarks: Chemicals were purchased from commercial suppliers and used as received. THF, toluene, and CH_2Cl_2 were dried by passing through an activated alumina column. Reactions were monitored by TLC analysis. Visualization was accomplished with a 254 nm UV lamp or by staining with a vanillin solution. The CombiFlash®R_f flash chromatography system (Teledyne ISCO) and prepacked RediSep®R_f columns were used for purification of products.

Melting points (mp) were determined with a Mel-Temp II apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer as thin films (CH₂Cb) on NaCl plates. Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were measured on Bruker Avance III 400 and Bruker Avance III 500 instruments at 400 (500) and 100 (125) MHz, respectively. The chemical shifts in spectra were measured in parts per million (ppm) on the delta (δ) scale relative to the resonance of the solvent peak (CDCl₃: ¹H = 7.27 ppm, ${}^{13}C$ = 77.0 ppm). Boron (${}^{11}B$) NMR spectra were measured on a Bruker Avance III 400 instrument at 128.4 MHz. The ¹¹B chemical shifts are given relative to $BF_3 \cdot OEt_2$ (¹¹B = 0 ppm). All NMR spectra were recorded at 293 K. The following abbreviations are used to describe coupling: s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublets; m =multiplet; br = broad; app = apparent. The resonances of hydrogen atoms connected to the boron atom often cannot be observed in ¹H NMR spectra because of quadrupole broadening. For the same reason, the resonances of carbene carbon atoms connected to the boron atom were not observed in ¹³C NMR spectra of all NHC-boranes. High resolution mass spectra (HRMS) were obtained on a Q-Tof Ultima API, Micromass UK Limited instrument by electrospray ionization (ESI).

Compounds 1^1 and 2^2 have been prepared according to the literature procedures. Their spectroscopic data were consistent with those previous reported.

Experimental Procedures and Compound Characterization:

General procedure: THF ring-opening reactions (GP): A solution of a base (0.2 mmol) was added to a solution of ArOH (0.2 mmol) in THF (0.5 mL) or toluene (0.5 mL) at rt under argon. After 5 min of stirring, the formation of the phenoxide ArOM was assumed. In a separate flask, triflic acid (10 μ L, 0.1 mmol) was added to a solution of dipp-Imd-BH₃ 1 (40.5 mg, 0.10 mmol) in CH₂Cl₂ (1 mL) at rt. After 10 min of stirring, the formation of dipp-Imd-BH₂OTf 2 was assumed. In several cases, CH₂Cl₂ was removed by rotary evaporation and the white residue was dissolved in THF (1 mL). Then the solution of ArOM was added to the resulting solution of dipp-Imd-BH₂OTf 2. The reaction mixture was stirred at rt for 20 h. The volatiles were removed under vacuum and the residue was loaded onto silica gel. The products were purified by flash chromatography.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (4-phenoxybutyloxy)borane (dipp-Imd-BH₂O(CH₂)₄OPh) (4a): Following GP with LiHMDS (1 M in toluene, 0.2 mL, 0.2 mmol) and PhOH (19 mg, 0.20 mmol) in THF (2 mL)-toluene (0.4 mL), elution with hexane:EtOAc = 90:10 gave dipp-Imd-BH₂O(CH₂)₄OPh **4a** as a white solid (28.9 mg, 51%): mp 121–122 °C; IR (thin film, cm⁻¹) v_{max} 3071, 2964, 2928, 2870, 2250 (B–H), 1689, 1599, 1586, 1538, 1497, 1470, 1387, 1368, 1332, 1301, 1246, 1208, 1172, 1061, 954, 936, 883, 803, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, *J* = 7.8 Hz, 2H), 7.30–7.22 (m, 6H), 7.00 (s, 2H), 6.91 (dt, *J* = 7.3, 1.0 Hz, 1H), 6.85 (dd, *J* = 8.6, 1.0 Hz, 1H), 3.70 (t, *J* = 7.0 Hz, 2H), 2.85 (t, *J* = 6.6 Hz, 2H), 2.65 (septet, *J* = 6.9 Hz, 4H), 1.32 (d, *J* = 6.8 Hz, 12H), 1.29 (app quintet, *J* = 7.8 Hz, 2H), 1.18 (d, *J* = 6.8 Hz, 12H), 1.07 (app quintet, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 145.2, 134.2, 129.7, 129.2, 123.6, 122.3, 120.0, 114.5, 68.8, 68.2, 28.7, 28.4, 25.8, 24.8, 22.9; ¹¹B NMR (128.4 MHz, CDCl₃) δ –9.2 (t, *J*_{B–H} = 92 Hz); HRMS (ESI) calcd. for C₃₇H₅₂¹¹BN₂O₂ ([M + H]⁺) 567.4122, found 567.4144.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (4-phenoxybutyloxy)borane (dipp-Imd-BH₂O(CH₂)₄OPh) (4a): Following GP with NaHMDS (0.6 M in toluene, 0.35 mL, 0.2 mmol) and PhOH (19 mg, 0.20 mmol) in THF (2 mL)-toluene (0.35 mL), elution with hexane:EtOAc = 90:10 gave dipp-Imd-BH₂O(CH₂)₄OPh 4a as a white solid (26.4 mg, 46%). The NMR data of the isolated product were identical to those of the previously prepared sample of 4a.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene phenoxyborane (dipp-Imd-BH₂OPh) (3a) 1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (4-phenoxybutyloxy)borane and (dipp-Imd-BH₂O(CH₂)₄OPh) (4a): Following GP with KHMDS (0.5 M in toluene, 0.4 mL, 0.2 mmol) and PhOH (19 mg, 0.20 mmol) in THF (2 mL)-toluene (0.4 mL), elution with hexane:EtOAc = 90:10 first gave dipp-Imd-BH₂OPh **3a** as a white solid (14.9 mg, 30%): mp 166–168 °C; IR (thin film, cm⁻¹) v_{max} 3129, 2963, 2927, 2869, 2282 (B–H), 1596, 1496, 1471, 1460, 1427, 1385, 1364, 1331, 1293, 1173, 1158, 1070, 998, 955, 878, 803, 759; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, J = 7.8 Hz, 2H), 7.29 (d, J = 8.0 Hz, 4H), 7.07 (s, 2H), 6.92 (t, J = 8.0 Hz, 4H), 7.07 (s, 2H), 7 Hz, 2H), 6.48 (t, J = 7.2 Hz, 1H), 6.18 (d, J = 7.6 Hz, 2H), 2.80 (br q, 2H), 2.65 (septet, J = 6.9Hz, 4H), 1.23 (d, J = 6.8 Hz, 12H), 1.20 (d, J = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 145.2, 134.1, 129.9, 128.1, 123.7, 122.5, 116.4, 115.5, 28.8, 24.7, 23.0; ¹¹B NMR (128.4 MHz, CDCl₃) δ -11.3 (t, J_{B-H} = 93 Hz); HRMS (ESI) calcd. for $C_{33}H_{43}^{11}BN_2NaO$ ([M + Na]⁺) 517.3366, found 517.3386.

Slightly more polar dipp-Imd-BH₂O(CH₂)₄OPh **4a** was eluted next and isolated as a white solid (23 mg, 40%). The NMR data of the isolated product were identical to those of the previously prepared sample of **4a**.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene **[4-(2,6-dimethylphenoxy)butyloxy]borane** (dipp-Imd-BH₂O(CH₂)₄O(2,6-Me₂C₆H₃) (4b): Following GP with KHMDS (0.5 M in toluene, 0.4 mL, 0.2 mmol) and 2,6-dimethylphenol (25 mg, 0.20 mmol) in THF (2 mL)–toluene (0.4 mL), elution with hexane:EtOAc = 90:10 gave 4b as a white solid (36.1 mg, 60%): mp 108–110 °C; IR (thin film, cm⁻¹) v_{max} 3162, 3134, 3070, 3035, 2962, 2928, 2869, 2712, 2225 (B–H), 1699, 1593, 1562, 1472, 1426, 1384, 1361, 1332, 1296, 1262, 1207, 1172, 1123, 1108, 1091, 1060, 1044, 983, 949, 938, 863, 802, 760; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 4H), 7.00 (s, 2H), 6.99 (d, *J* = 6.4 Hz, 2H), 6.89 (t, *J* = 7.4 Hz, 1H), 3.52 (t, *J* = 6.8 Hz, 2H), 2.86 (t, *J* = 6.6 Hz, 2H), 2.65 (septet, *J* = 6.8 Hz, 4H), 2.23 (s, 6H), 1.40–1.30 (m, 2H), 1.32 (d, *J* = 6.8 Hz, 12H), 1.29 (app quintet, *J* = 7.8 Hz, 2H), 1.18 (d, *J* = 6.8 Hz, 12H), 1.12 (app quintet, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 145.2, 145.2, 131.0, 129.7, 128.5, 123.6, 123.2, 122.3, 72.8, 69.1, 28.7, 28.7, 27.0, 24.8, 24.8, 22.9, 16.3; ¹¹B NMR (128.4 MHz, CDCl₃) δ -9.2 (t, *J*_{B-H} = 91 Hz); HRMS (ESI) calcd. for C₃₉H₅₅¹¹BN₂NaO₂ ([M + Na]⁺) 617.4254, found 617.4227.

Dipp-Imd-BH₂O(2,6-Me₂C₆H₃) **3b** was isolated as impure solid (1.3 mg, 2%) and was not characterized.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene [**4-(4-chlorophenoxy)butyloxy]borane** (**dipp-Imd-BH**₂**O**(**CH**₂)₄**OC**₆**H**₄**Cl**) (**4c**): Following GP with NaHMDS (1 M in THF, 0.2 mL, 0.2 mmol) and 4-chlorophenol (25 mg, 0.20 mmol) in THF (1.5 mL)–CH₂Cl₂ (1 mL), elution with hexane:EtOAc = 6:1 gave **4c** as a light yellow solid (30.5 mg, 50%): mp 115–120 °C; IR (thin film, cm⁻¹) v_{max} 3073, 2963, 2929, 2869, 2359 (B–H), 2222 (B–H), 1695, 1596, 1580, 1492, 1471, 1426, 1385, 1364, 1332, 1286, 1245, 1211, 1161, 1123, 1104, 1092, 1060, 1005, 824, 823, 759; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (t, *J* = 7.5 Hz, 2H), 7.26 (d, *J* = 7.5 Hz, 4H), 7.20 (d, *J* = 9.0 Hz, 2H), 7.00 (s, 2H), 6.76 (d, *J* = 9.0 Hz, 2H), 3.66 (t, *J* = 6.9 Hz, 2H), 2.84 (t, *J* = 6.5 Hz, 2H), 2.64 (septet, *J* = 6.9, 4H), 1.31 (d, *J* = 6.9 Hz, 12H), 1.30–1.20 (m, 2H), 1.18 (d, *J* = 7.2 Hz, 12H), 1.06 (app quintet, *J* = 7.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 145.2, 134.2, 129.7, 129.1, 124.7, 123.6, 122.3, 115.7, 68.7, 68.6, 28.7, 28.3, 25.6, 24.8, 22.9; ¹¹B NMR (96.3 MHz, CDCl₃) δ –9.3 (t, *J*_{B-H} = 84 Hz); HRMS (ESI) calcd. for C₃₇H₅₀¹¹B³⁵CIN₂NaO₂ ([M + Na]⁺) 623.3552, found 623.3535. Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

1.3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (4-cvanophenoxy)borane (dipp-Imd-BH₂- OC_6H_4CN (**3d**) and 1.3-bis(2.6-diisopropylphenyl)imidazol-2-ylidene [4-(4-cvanophenoxy)butyloxy]borane (dipp-Imd-BH₂O(CH₂)₄OC₆H₄CN) (4d): Following GP with NaHMDS (1 M in THF, 0.2 mL, 0.2 mmol) and 4-cyanophenol (24 mg, 0.20 mmol) in THF (1.5 mL)-CH₂Cl₂ (1 mL), elution with hexane:EtOAc = 8:1 to 3:1 gave dipp-Imd-BH₂OC₆H₄CN 3d as a white solid (10.6 mg, 20%): mp 181-182 °C; IR (thin film, cm⁻¹) v_{max} 2966, 2929, 2871, 2306, 2212, 1600, 1511, 1471, 1385, 1366, 1325, 1174, 1155, 1125, 1101, 1086, 1061, 937, 839, 762, 740; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 7.5, 4H), 7.19 (d, J = 8.7 Hz, 2H), 7.11 (s, 2H), 6.17 (d, J = 9.0 Hz, 2H), 2.60 (septet, J = 6.9, 4H), 1.21 (d, J = 6.9Hz, 12H), 1.20 (d, J = 6.9 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 145.2, 133.7, 133.0, 130.2, 123.8, 122.8, 121.2, 117.1, 97.8, 28.8, 24.7, 23.0; ¹¹B NMR (96.3 MHz, CDCh) δ –11.2 (br s); HRMS (ESI) calcd. for $C_{34}H_{42}^{11}BN_3NaO$ ([M + Na]⁺) 542.3319, found 542.3342.

Further elution gave dipp-Imd-BH₂O(CH₂)₄OC₆H₄CN **4d** as yellow oil (8.2 mg, 14%). The compound **4d** was only about 75% pure and was not stable enough to be fully characterized: IR (thin film, cm⁻¹) v_{max} 2965, 2929, 2871, 2224, 1698, 1651, 1605, 1508, 1470, 1386, 1367, 1331, 1303, 1259, 1207, 1171, 1114, 1061; ¹H NMR (300 MHz, CDCl₃) δ 7.55 (t, *J* = 6.9 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.25 (d, *J* = 7.8 Hz, 4H), 7.08 (s, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 3.74 (t, *J* = 6.9 Hz, 2H), 2.84 (t, *J* = 6.3 Hz, 2H), 2.65 (septet, *J* = 6.9, 4H), 1.30 (d, *J* = 6.9 Hz, 12H), 1.30–1.20 (m, 2H), 1.17 (d, J = 6.9 Hz, 12H), 1.06 (app quintet, J = 6.9 Hz, 2H); ¹¹B NMR (96.3 MHz, CDCl₃) δ –9.3 (t, $J_{B-H} = 92$ Hz); HRMS (ESI) calcd. for $C_{38}H_{50}^{11}BN_3NaO_2$ ([M + Na]⁺) 614.3894, found 614.3888.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (4-nitrophenoxy)borane (dipp-Imd-BH₂-OC₆H₄NO₂) (3e): Following GP with NaHMDS (0.6 M in toluene, 0.35 mL, 0.2 mmol) and 4nitrophenol (28 mg, 0.20 mmol) in THF (2 mL)–toluene (0.4 mL), elution with hexane:EtOAc = 80:20 gave 3e as a light yellow solid (23.5 mg, 43%): mp 175–178 °C; IR (thin film, cm⁻¹) v_{max} 2965, 2929, 2871, 2328 (B–H), 1594, 1500, 1471, 1429, 1386, 1365, 1313, 1257, 1178, 1158, 1104, 1089, 952, 938, 849, 804, 758; ¹H NMR (300 MHz, CDCl₃) δ 7.87–7.83 (m, 2H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 4H), 7.12 (s, 2H), 6.16–6.12 (m, 2H), 2.61 (septet, *J* = 6.9, 4H), 1.22 (d, *J* = 6.9 Hz, 12H), 1.21 (d, *J* = 6.9 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 145.2, 137.7, 133.7, 130.3, 125.5, 123.9, 122.9, 116.1, 28.9, 24.7, 23.0; ¹¹B NMR (96.3 MHz, CDCl₃) δ –10.9 (br s); HRMS (ESI) calcd. for C₃₃H₄₂¹¹BN₃NaO₃ ([M + Na]⁺) 562.3217, found 562.3209.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene phenoxyborane (dipp-Imd-BH₂OPh)

(3a): A solution of KHMDS (0.5 M in toluene, 0.2 mL, 0.2 mmol) was added to a solution of PhOH (19 mg, 0.20 mmol) and 18-crown-6 ether (53 mg, 0.20 mmol) in toluene (0.1 mL) at rt under argon. After 5 min of stirring, the formation of PhOK was assumed. In a separate flask, triflic acid (10 μ L, 0.1 mmol) was added to a solution of dipp-Imd-BH₃ **1** (40.5 mg, 0.10 mmol) in toluene (1 mL) at rt. After 10 min of stirring, the formation of dipp-Imd-BH₂OTf **2** was assumed. Then the solution of dipp-Imd-BH₂OTf **2** was added to a suspension of PhOK followed by toluene (1.5 mL). The cloudy reaction mixture was stirred at rt for 2 days. The volatiles were removed under vacuum and the residue was loaded onto silica gel. The products were purified by flash chromatography. Elution with hexane:Et₂O = 95:5 gave dipp-Imd-BH₂OPh **3a** as a white solid (31.9 mg, 64%). The NMR data of the isolated product were identical to those of the previously prepared sample of **3a**.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (ethylthio)borane (dipp-Imd-BH₂SEt) (3f) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene [4-(ethylthio)butyloxy]borane (dipp-Imd-BH₂O(CH₂)₄SEt) (4f): A solution of LiHMDS (1 M in toluene, 0.2 mL, 0.2 mmol) was added to a solution of EtSH (15 μ L, 0.20 mmol) in THF (0.5 mL) at rt. After 5 min of

stirring, the formation of EtSLi was assumed. In a separate flask, triflic acid (10 µL, 0.1 mmol) was added to a solution of dipp-Imd-BH₃ 1 (40.5 mg, 0.10 mmol) in toluene (1 mL) at rt. After 10 min of stirring, the formation of dipp-Imd-BH₂OTf 2 was assumed. Toluene was removed by rotary evaporation and the white residue was dissolved in THF (1.5 mL). Then the solution of EtSLi was added to the resulting solution of dipp-Imd-BH2OTf 2. The cloudy reaction mixture was stirred at rt for 20 h. The volatiles were removed under vacuum and the residue was loaded onto silica gel. The product was purified by flash chromatography. Elution with hexane: EtOAc =95:5 to 90:10 gave dipp-Imd-BH₂SEt **3f** as a white solid (7.3 mg, 16%): mp 204–207 °C; IR (thin film, cm⁻¹) v_{max} 3156, 3053, 2963, 2926, 2869, 2365 (B–H), 1565, 1471, 1429, 1383, 1364, 1333, 1258, 1233, 1173, 1061, 1038, 937, 803, 763; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, J =7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 4H), 7.04 (s, 2H), 2.62 (septet, J = 6.8 Hz, 4H), 1.53 (q, J = 7.3Hz, 2H), 1.34 (d, J = 6.8 Hz, 12H), 1.16 (d, J = 6.8 Hz, 12H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 133.9, 130.1, 123.8, 122.4, 28.8, 27.1, 25.3, 22.7, 17.3; ¹¹B NMR (128.4 MHz, CDCl₃) δ -24.0 (t, J = 99 Hz); HRMS (ESI) calcd. for C₂₉H₄₄¹¹BN₂S ([M + H]⁺) 463.3318, found 463.3301.

Further elution gave dipp-Imd-BH₂O(CH₂)₄SEt **4f** as a white solid (29.3 mg, 54%): mp 66–68 °C; IR (thin film, cm⁻¹) v_{max} 3075, 2963, 2928, 2869, 2708, 2218 (B–H), 1596, 1471, 1459, 1426, 1384, 1364, 1332, 1259, 1211, 1173, 1121, 1107, 1060, 1037, 981, 949, 937, 802, 759; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, J = 7.8 Hz, 2H), 7.26 (d, J = 8.0 Hz, 4H), 6.98 (s, 2H), 2.78 (t, J = 6.6, 2H), 2.63 (septet, J = 6.8 Hz, 4H), 2.45 (q, J = 7.5 Hz, 2H), 2.26 (t, J = 7.8 Hz, 2H), 1.31 (d, J = 6.8 Hz, 12H), 1.20 (t, J = 7.4 Hz, 3H), 1.17 (d, J = 6.8 Hz, 12H), 1.12 (app. quintet, J = 8.0 Hz, 2H), 0.99 (app. quintet, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 134.2, 129.7, 123.6, 122.3, 68.9, 31.8, 31.7, 28.7, 26.4, 25.7, 24.8, 22.9, 14.8; ¹¹B NMR

(128.4 MHz, CDCl₃) δ –9.3 (t, J = 94 Hz); HRMS (ESI) calcd. for $C_{33}H_{50}^{11}BN_2OS$ ([M – H]⁺) 533.3737, found 533.3749.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (4-hydroxybutyloxy)borane (dipp-Imd-BH₂O(CH₂)₄OH) (5): A solution of TMSOK (26 mg, 0.20 mmol) and dipp-Imd-BH₂OTf **2** (55 mg, 0.10 mmol) in a THF (2 mL) was stirred for 20 h at rt. The solvent was removed and the residue was loaded on silica gel. Chromatographic separation (elution with hexane : EtOAc = 2 : 1 to 1 : 1) gave dipp-Imd-BH₂O(CH₂)₄OH **5** as a white solid (18.3 mg, 37%): mp 106–108 °C; IR (thin film, cm⁻¹) v_{max} 3159, 3073, 2963, 2928, 2870, 2287, 2228 (B–H), 1683, 1595, 1471, 1460, 1426, 1385, 1364, 1332, 1299, 1271, 1257, 1213, 1171, 1103, 1061, 1043, 949, 937, 871, 803, 759, 733; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 4H), 7.02 (s, 2H), 5.41 (t, *J* = 6.2 Hz, 1H), 3.27 (q, *J* = 5.5 Hz, 2H), 2.66 (t, *J* = 5.2 Hz, 2H), 2.62 (septet, *J* = 6.9, 4H), 1.33 (d, *J* = 6.8 Hz, 12H), 1.35–1.25 (m, 2H), 1.16 (d, *J* = 6.8 Hz, 12H), 1.06 (app quintet, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 133.9, 129.9, 123.7, 122.4, 70.0, 62.4, 32.2, 30.4, 28.7, 25.0, 22.7; ¹¹B NMR (128.4 MHz, CDCl₃) δ –9.3 (t, *J* = 96 Hz); HRMS (ESI) calcd. for C₃₁H₄₈¹¹BN₂O₂ ([M]⁺) 491.3809, found 491.3828.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene ethoxyborane (dipp-Imd-BH₂OEt) (S1): Lithium ethoxide was prepared by the addition of BuLi (1.6 M solution in hexanes, 0.13 mL, 0.21 mmol) to a solution of ethanol (12 μ L, 0.20 mmol) in THF (0.5 mL) at 0 °C. Then compound **S1** was prepared according to GP from resulting EtOLi (0.20 mmol) and dipp-Imd-BH₂OTf **2** (50 mg, 0.09 mmol) in a THF (1.5 mL)–CH₂Cl₂ (0.5 mL) solution. Chromatographic separation (elution with hexane:EtOAc = 8:1 to 5:1) gave dipp-Imd-BH₂OEt **S1** as a light yellow solid (14.9 mg, 33%): ¹H NMR (300 MHz, CDCl₃) δ 7.44 (t, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 4H), 7.00 (s, 2H), 2.82 (q, *J* = 6.9 Hz, 2H), 2.65 (septet, *J* = 6.8, 4H), 1.32 (d, *J* = 6.9 Hz, 12H), 1.17 (d, *J* = 6.9 Hz, 12H), 0.52 (t, *J* = 6.9 Hz, 6H); ¹¹B NMR (96.3 MHz, CDCl₃) δ -9.5 (t, *J* = 96 Hz).

The isolated sample of S1 was only 90% pure and decomposed during the attempts to purify it by recrystallization.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene (3-phenyloxypropoxy]borane (dipp-Imd-BH₂O(CH₂)₃OPh) (6): A solution of BuLi (1.5 M in hexanes, 0.13 mL, 0.2 mmol) was added to a solution of PhOH (19 mg, 0.20 mmol) in PhH (0.5 mL) at rt. After 5 min of stirring, the S13

formation of a precipitate of PhOLi was observed. In a separate flask, triffic acid (10 µL, 0.1 mmol) was added to a solution of dipp-Imd-BH₃ 1 (40.5 mg, 0.10 mmol) in CH₂Cb (0.5 mL) at rt. After 10 min of stirring, the formation of dipp-Imd-BH₂OTf 2 was assumed. Then the resulting solution of dipp-Imd-BH₂OTf 2 was added to the suspension of PhOLi followed by oxetane (0.13 mL, 2.0 mmol). The reaction mixture was stirred at rt for 20 h. The volatiles were removed under vacuum and the residue was purified by column chromatography. Elution with hexane: EtOAc = 5:1 gave dipp-Imd-BH₂O(CH₂)₃OPh **6** as yellow oil (24 mg, 43%). The product was about 90% pure: IR (thin film, cm⁻¹) v_{max} 3071, 2963, 2929, 2869, 2224 (B–H), 1691, 1600, 1586, 1497, 1471, 1426, 1384, 1364, 1332, 1300, 1247, 1212, 1172, 1123, 1061, 1032, 950, 937, 803, 755; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (t, J = 7.8 Hz, 2H), 7.30–7.20 (m, 6H), 6.99 (s, 2H), 6.90 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 8.4 Hz, 2H), 3.46 (t, J = 7.2 Hz, 2H), 3.00 (t, J = 6.0Hz, 2H), 2.64 (septet, J = 6.9, 4H), 1.44 (app. quintet, J = 6.8, 2H), 1.31 (d, J = 6.6 Hz, 12H), 1.30–1.20 (m, 2H), 1.18 (d, J = 6.9 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 145.2, 134.1, 129.8, 129.0, 123.6, 122.3, 119.8, 114.7, 66.5, 65.7, 32.1, 28.8, 24.8, 24.6, 23.0; ¹¹B NMR (96.3 MHz, CDCl₃) δ –9.2 (t, J = 87 Hz); HRMS (ESI) calcd. for $C_{36}H_{49}^{11}BN_2NaO_2$ ([M + Na]⁺) 575.3785, found 575.3755.

1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene acetoxyborane (7): A solution of BuLi (0.9 M in hexanes, 0.22 mL, 0.2 mmol) was added to a solution of PhOH (19 mg, 0.20 mmol) in EtOAc (0.5 mL) at rt. After 5 min of stirring, the formation of PhOLi was assumed. In a separate

flask, triflic acid (10 µL, 0.1 mmol) was added to a solution of dipp-Imd-BH₃ **1** (40.5 mg, 0.10 mmol) in PhH (0.5 mL) at rt. After 10 min of stirring, the formation of dipp-Imd-BH₂OTf **2** was assumed. The solvent was removed by rotary evaporation and the residue was dissolved in EtOAc (0.5 mL). Then the resulting solution of dipp-Imd-BH₂OTf **2** was added to the solution of PhOLi. The reaction mixture was stirred at rt for 20 h. The volatiles were removed under vacuum and the residue was purified by column chromatography. Elution with hexane:EtOAc = 9:1 to pure EtOAc gave dipp-Imd-BH₂OAc **7** as a white solid (14.5 mg, 31%): mp 203–204 °C; IR (thin film, cm⁻¹) v_{max} 3153, 3114, 3082, 2962, 2926, 2872, 2359, 2340, 1682, 1470, 1428, 1372, 1314, 1160, 1106, 802, 760; ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 145.1, 133.6, 130.1, 123.8, 122.7, 28.8, 24.8, 22.9, 22.2; ¹¹B NMR (128.4 MHz, CDCl₃) δ –12.4 (t, *J* = 89 Hz); HRMS (ESI) calcd. for C₂₉H₄₁¹¹BN₂NaO₂ ([M + Na]⁺) 483.3159, found 483.3150.

References:

- Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, E.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082-10083.
- (2) Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D.
 - P. J. Am. Chem. Soc. 2010, 132, 15072-15080.

AS63-02, dipp-Imd-BH2O(CH2)4OPh, THF-DCM, Fr. 56-68, CDCl3, 400B, 10/26/10

AS63-02, dipp-Imd-BH20(CH2)40Ph, THF-DCM, Fr. 56-68, CDCl3, 400B, 10/26/10

AS63-81, dipp-Imd-BHOPh, CDCl3, Fr. 49-62, 400B, 03/23/11

AS63-81, dipp-Imd-BHOPh, CDCl3, Fr. 49-62, 400B, 03/29/11

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

AS63-81, dipp-Imd-BHOPh, CDCl3, Fr. 49-62, 400B, 03/23/11

AS63-87, dipp-Imd-BHO(CH2)40C6H3Me2, Fr. 44-55, 400B, 03/31/11

AS63-87, dipp-Imd-BHO(CH2)4OC6H3Me2, Fr. 44-55, 400B, 03/31/11

AS34-37, IPr-IMD-BH2OTf + ClC6H4ONa, Fr. 18-20, CDCl3, 301b, 02/07/10

AS34-37, IPr-IMD-BH2OTf + ClC6H4ONa, Fr. 18-20, CDCl3, 301b, 02/07/10

AS34-36, IPr-IMD-BH2OTf + NCC6H4ONa, Fr. 21-23, CDC13, 301b, 02/07/10

AS34-36, IPr-IMD-BH2OTf + NCC6H4ONa, Fr. 21-23, CDC13, 301b, 02/07/10

AS34-36, IPr-IMD-BH2OTf + NCC6H4ONa, Fr. 27-29, CDCl3, 301b, 02/07/10

AS34-13, IPr-IMD-BH2OC6H4NO2, Fr. 16-19, CDC13, 301b, 01/13/10

AS63-95, dipp-Imd-BH2OC6H4NO2, Fr. 27-36, CDCl3, 400B, 04/19/11

AS34-13, IPr-IMD-BH2OC6H4NO2, Fr. 16-19, CDC13, 301b, 01/13/10

AS82-49, dipp-Imd-BH2SEt, Fr. 35-46, CDCl3, 400B, 10/26/11

AS82-49, dipp-Imd-BH2SEt, Fr. 35-46, CDCl3, 400B, 10/26/11

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

AS82-49, dipp-Imd-BH2SEt, Fr. 35-46, CDCl3, 400B, 10/26/11

AS82-48, dipp-Imd-BH2O(CH2)4SEt, Fr. 38-46, CDCl3, 400B, 10/21/11

AS82-48, dipp-Imd-BH2O(CH2)4SEt, Fr. 38-46, CDCl3, 400B, 10/21/11

AS82-48, dipp-Imd-BH2O(CH2)4SEt, Fr. 38-46, CDCl3, 400B, 10/21/11

AS82-01, dipp-Imd-BH20(CH2)40H, Fr. 52-59, CDCl3, 400B, 04/29/11

AS82-01, dipp-Imd-BH2O(CH2)4OH, Fr. 52-59, CDCl3, 400B, 04/29/11

AS82-01, dipp-Imd-BH2OTf + TMSOK in THF, Fr. 52-59, CDCl3, 400B, 04/29/11

AS22-92, IPr-IMD-BH2OTf + EtOLi, Fr. 23-28, CDCl3, 301b, 12/10/09

AS22-92, IPr-IMD-BH2OTf + EtOLi, Fr. 23-28, CDCl3, 301b, 12/10/09

AS34-10, IPr-IMD-BH2OTf + PhOLi in oxetane, Fr. 15-18, CDCl3, 301b, 01/09/10

AS34-10, IPr-IMD-BH2OTf + PhOLi in oxetane, Fr. 15-18, CDCl3, 301b, 01/09/10

AS49-68, IPr-IMD-BH2OAc, crystal, CDCl3, 400B, 09/21/10

AS49-68, IPr-IMD-BH2OTf + PhOLi in EtOAc, Fr. 41-48, CDCl3, 400B, 09/16/10

AS49-68, IPr-IMD-BH2OTf + PhOLi in EtOAc, Fr. 41-48, CDCl3, 400B, 09/16/10

