Supplementary Data

Application of the Cluster Expansion Method

$$\delta_{1/3} = \delta_{1/3}^{(0)} + \left(\frac{1}{1 + \beta_1 10^{-pH} + \beta_2 10^{-2pH} + \beta_3 10^{-3pH} + \beta_4 10^{-4pH} + \beta_5 10^{-5pH}}\right) \begin{cases} A\left(\beta_1 10^{-pH}\right) + B\left(\beta_2 10^{-2pH}\right) + C\left(\beta_3 10^{-3pH}\right) + B\left(\beta_4 10^{-4pH}\right) + C\left(\beta_4 10^{-4pH}\right) + C\left(\beta_5 10^{-5pH}\right) \end{cases}$$
(1)

$$\delta_{4/6} = \delta_{4/6}^{(0)} + \left(\frac{1}{1 + \beta_1 10^{-pH} + \beta_2 10^{-2pH} + \beta_3 10^{-3pH} + \beta_4 10^{-4pH} + \beta_5 10^{-5pH}}\right) \left\{ \begin{array}{c} F\left(\beta_1 10^{-pH}\right) + G\left(\beta_2 10^{-2pH}\right) + H\left(\beta_3 10^{-3pH}\right) + I\left(\beta_3 10^{-2pH}\right) + I\left(\beta_3 10$$

$$\delta_{5} = \delta_{5}^{(0)} + \left(\frac{1}{1 + \beta_{1} 10^{-pH} + \beta_{2} 10^{-2pH} + \beta_{3} 10^{-3pH} + \beta_{4} 10^{-4pH} + \beta_{5} 10^{-5pH}}\right) \left\{ \begin{array}{c} K\left(\beta_{1} 10^{-pH}\right) + L\left(\beta_{2} 10^{-2pH}\right) + M\left(\beta_{3} 10^{-3pH}\right) + N\left(\beta_{3} 10^{-3pH}\right) + N\left(\beta_{3} 10^{-2pH}\right) + N\left(\beta_{3} 10^{-5pH}\right) + N\left(\beta_$$

where $\delta_{1/3}{}^{(0)}$, $\delta_{4/6}{}^{(0)}$ and $\delta_5{}^{(0)}$ are the chemical shifts for P1 (or P3), P4 (or P6) and P5 respectively, when all groups are deprotonated, β_1 , β_2 , β_3 , β_4 and β_5 are the logarithms of the overall protonation constants, and A, B, C, D, E, F, G, H, I, J, K, L, M, N and O are defined as:

$$A = (\Delta_{11} + \Delta_{13})\pi(\{1, 0, 0, 0, 0\}) + (\Delta_{14} + \Delta_{16})\pi(\{0, 0, 1, 0, 0\}) + \Delta_{15}\left(1 - 2\pi(\{1, 0, 0, 0, 0\}) - 2\pi(\{0, 0, 1, 0, 0\})\right)$$
(4)

$$B = (\Delta_{11} + \Delta_{13}) (\pi(\{1, 1, 0, 0, 0\}) + \pi(\{1, 0, 0, 0, 1\}) + \pi(\{1, 0, 0, 1, 0\}) + \pi(\{1, 0, 1, 0, 0\})) + (\Delta_{16} + \Delta_{14}) (\pi(\{1, 0, 1, 0, 0\}) + \pi(\{1, 0, 0, 0, 1\}) + \pi(\{0, 0, 0, 1, 1\}) + \pi(\{0, 0, 1, 0\})) + (\Delta_{15}) (2\pi(\{1, 0, 0, 1, 0\}) + 2\pi(\{0, 0, 0, 1, 1\})))$$
(5)

$$C = (\Delta_{11} + \Delta_{13}) (2\pi(\{1,1,1,0,0\}) + \pi(\{1,1,0,1,0\}) + \pi(\{0,1,1,1,0\}) + \pi(\{0,1,1,0,1\}) + \pi(\{1,0,1,1,0\})) + (\Delta_{16} + \Delta_{14}) (\pi(\{1,1,1,0,0\}) + \pi(\{1,0,1,1,0\}) + 2\pi(\{0,1,1,0,1\}) + \pi(\{0,0,1,1,1\})) + (\Delta_{15}) (\pi(\{1,1,0,1,0\}) + 2\pi(\{1,0,1,1,0\}) + 2\pi(\{0,1,1,1,0\}) + \pi(\{0,0,1,1,1\}))$$

$$(6)$$

$$D = (\Delta_{11} + \Delta_{13}) (1 - \pi (\{1, 0, 1, 1, 1\})) + (\Delta_{16} + \Delta_{14}) (1 - \pi (\{1, 1, 1, 1, 0\})) + (\Delta_{15}) (2\pi (\{1, 1, 1, 1, 0\}) + 2\pi (\{1, 0, 1, 1, 1\}))$$
(7)

$$\begin{split} & \mathsf{E} = \Delta_{11} + \Delta_{13} + \Delta_{14} + \Delta_{15} + \Delta_{16} \end{split} \tag{8} \\ & \mathsf{F} = (\Delta_{41} + \Delta_{43}) \pi(\{1,0,0,0,0\}) + (\Delta_{44} + \Delta_{46}) \pi(\{0,0,1,0,0\}) + \Delta_{45} \left(1 - 2\pi(\{1,0,0,0,0\}) - 2\pi(\{0,0,1,0,0\})\right) \end{aligned} \tag{9} \\ & \mathsf{G} = (\Delta_{41} + \Delta_{43}) \left(\pi(\{1,1,0,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{1,0,0,1,0\}) + \pi(\{1,0,1,0,0\})\right) + \\ & + (\Delta_{46} + \Delta_{44}) \left(\pi(\{1,0,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,0,1,1\}) + \pi(\{0,0,1,0,1\})\right) + \\ & + (\Delta_{46}) \left(2\pi(\{1,0,0,1,0\}) + 2\pi(\{0,0,0,1,1\})\right) \end{aligned} \tag{10} \\ & \mathsf{H} = (\Delta_{41} + \Delta_{43}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,1,0\}) + \pi(\{0,1,1,0\}) + \pi(\{0,0,1,1,0\}) + \pi(\{1,0,1,1,0\})\right) + \\ & + (\Delta_{45}) \left(2\pi(\{1,1,0,0\}) + 2\pi(\{1,0,1,1,0\}) + 2\pi(\{0,1,1,0\}) + \pi(\{0,0,1,1,1\})\right) + \\ & + (\Delta_{45}) \left(\pi(\{1,1,0,0\}) + 2\pi(\{1,0,1,1,0\}) + 2\pi(\{0,1,1,1,0\}) + \pi(\{0,0,1,1,1\})\right) + \\ & + (\Delta_{45}) \left(2\pi(\{1,0,0,0,0\}) + (2\Delta_{54})\pi(\{0,0,1,0,0\}) + \Delta_{55} \left(1 - 2\pi(\{1,0,0,0,0\}) - 2\pi(\{0,0,1,0,0\})\right) \right) \end{aligned} \tag{11} \\ & \mathsf{L} = (2\Delta_{51})\pi(\{1,0,0,0,0\}) + (2\Delta_{54})\pi(\{0,0,1,0,0\}) + \pi(\{1,0,1,0,0\})) + \\ & + (\Delta_{45}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{1,0,0,1,0\}) + \pi(\{1,0,1,0,0\})\right) + \\ & + (\Delta_{45}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,1,1\}) + \pi(\{0,0,1,0,1\})\right) + \\ & + (\Delta_{53}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,1,1\}) + \pi(\{0,0,1,0,1\}) + \pi(\{1,0,1,1,0\})\right) + \\ & + (\Delta_{45}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,1,1\}) + \pi(\{0,0,1,0,1\})\right) + \\ & + (\Delta_{45}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,0,1\}) + \pi(\{1,0,1,0,0\})\right) + \\ & + (\Delta_{54}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,1,0\}) + \pi(\{0,0,1,1,0\})\right) + \\ & + (\Delta_{453}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,0,1\}) + \pi(\{0,0,1,0,1\})\right) + \\ & + (\Delta_{453}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,0,1\}) + \pi(\{1,0,1,0,0\}) + \pi(\{1,0,1,1,0\})\right) + \\ & + (\Delta_{543}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,1,1,0,0\}) + \pi(\{0,0,1,1,0\})\right) + \\ & + (\Delta_{453}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,0,0,1\}) + \pi(\{0,0,1,1,0\}) + \pi(\{0,0,1,1,0\}) + \\ & + (\Delta_{453}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,1,0,0\}) + \pi(\{0,0,1,1,0,0\}) + \pi(\{0,0,1,1,0\})\right) + \\ & + (\Delta_{453}) \left(2\pi(\{1,1,1,0,0\}) + \pi(\{1,0,1,0,0\}) + \pi(\{0,0,1,1,0,0\}) + \pi(\{0,0,1,1,0\}) + \\$$

$$+(\Delta_{55}) \big(\pi(\{1,1,0,1,0\}) + 2\pi(\{1,0,1,1,0\}) + 2\pi(\{0,1,1,1,0\}) + \pi(\{0,0,1,1,1\}) \big)$$
(16)

$$N = (2\Delta_{51}) \left(1 - \pi(\{1,0,1,1,1\}) \right) + (2\Delta_{54}) \left(1 - \pi(\{1,1,1,1,0\}) \right) + (\Delta_{55}) \left(2\pi(\{1,1,1,1,0\}) + 2\pi(\{1,0,1,1,1\}) \right)$$
(17)

$$O = 2\Delta_{51} + 2\Delta_{54} + \Delta_{55}$$
(18)

On the other hand, the cluster parameter Δ_{lm} is the chemical shift increment representing the change in the chemical shift of a phosphorus nucleus l, while a given site m changes its state from deprotonated to protonated, and $\pi(\{S_i\})$ is the conditional probability of finding a particular microstate within its macrostate. A nonlinear regression was performed, fitting the experimental points to the Eqs. (1), (2) and (3). Then, starting from the values obtained for A–O, the equation system (4)–(18) was solved, setting the inputs from the data previously

reported for $Ins(1,2,3)P_3^2$, and with the restriction that the $\pi(\{S_i\})$ must take values between 0 and 1. Obtained results are depicted in Table S1.

Cluster parameters		Microprotonation constants										
		 i	log k _i	pi	$\log k_{pi}$	ppi	log k _{ppi}	pppi	log k _{pppi}	ррррі	log	
											k_{ppppi}	
Δ_{11}	-4.810	1/3	11.94	13/31	10.82	134/136	9.13	1346/1364	7.58	14563/34561	5.83	
Δ_{13}	0.195	4/6	12.60	14/36	11.13	135	9.24	1345/1365	7.41	13456/13564	5.75	
Δ_{14}	0.425	5	12.28	15/35	10.76	143/361	8.82	1354/1356	7.30	1346	5.58	
Δ_{15}	-0.638			16/34	10.60	145/365	8.93	3451/1563	7.83			
Δ_{16}	0.675			41/63	10.47	146/364	9.05	3456/1564	7.75			
Δ_{41}	0.155			43/61	9.94	153/351	9.30	3461/1463	7.35			
Δ_{43}	0.375			45/65	10.45	154/356	9.30	3465/1465	7.10			
Δ_{44}	-2.630			46/64	11.05	156/354	8.77	1453/3561	7.30			
Δ_{45}	-1.180			51/53	10.42	163/341	9.35	1456/3564	7.22			
Δ_{46}	1.200			54/56	10.77	164/346	9.58	4561/4563	6.95			
Δ_{51}	0.012					165/345	8.93					
Δ_{54}	0.551					541/563	8.42					
Δ_{55}	-3.380					543/561	8.95					
						546/564	9.22					
$\pi(\{1,0,0,0,0\})$	0.113					461/463	8.47					
$\pi(\{0,0,1,0,0\})$	0.324					465	8.62					
$\pi(\{1,1,0,0,0\})$	0.010											
$\pi(\{1,0,0,0,1\})$	0.077											
$\pi(\{1,0,0,1,0\})$	0.104											
$\pi(\{1,0,1,0,0\})$	0.027											
$\pi(\{0,0,0,1,1\})$	0.094											
$\pi(\{1,1,1,0,0\})$	0.031											
$\pi(\{1,1,0,1,0\})$	0.012											
$\pi(\{0,1,1,1,0\})$	0.012											
$\pi(\{0,1,1,0,1\})$	0.144											
$\pi(\{1,0,1,1,0\})$	0.192											
$\pi(\{1,0,1,1,1\})$	0.087											
$\pi(\{1,1,1,1,0\})$	0.264											
$\pi(\{1,1,1,1,1\})$	1.000											

Table S1. Adjusted values of the cluster expansion parameters, Δ_{lm} and $\pi(\{S_i\})$, and logarithms of the microprotonation constants (*k*) for Ins(1,3,4,5,6)*P*₅ in NMe₄Cl 0.15 M at 37.0 °C. The subscript *i* represents the phosphate site being protonated while *p* denotes the sites already protonated.

³¹P NMR spectra

The ³¹P NMR spectra registered for $Ins(1,3,4,5,6)P_5$ in the absence and presence of Na⁺ and Mg²⁺ are shown in Figure S1.

Figure S1. ³¹P NMR spectra for $Ins(1,3,4,5,6)P_5$ as a function of pH in 0.15 M NMe₄Cl at 37.0 °C. (a) $[Ins(1,3,4,5,6)P_5] = 10.6$ mM; (b) $[Ins(1,3,4,5,6)P_5] = 4.8$ mM, $[Na^+] = 0.5$ M; $[Ins(1,3,4,5,6)P_5] = 2.5$ mM, $[Mg^{2+}] = 1.0$ mM.

Structural aspects of $Ins(1,3,4,5,6)P_5-Mg^{2+}$ interaction

Based on the ³¹P NMR information, the figure S2 depicts the most probable sites for the metal ion and the protons on the ligand in the 1:1 $Ins(1,3,4,5,6)P_5-Mg^{2+}$ complexes.

Figure S2. Scheme of the most probable protonation and complexation patterns for the 1:1 $Ins(1,3,4,5,6)P_5-Mg^{2+}$ complexes as provided by the ³¹P NMR data.

Comparative fit of alternative chemical models for the $Ins(1,3,4,5,6)P_5$ -Na⁺ system

In the case of sodium containing system, the best chemical model for the NMR experimental data fit is that included in the section "Coordination properties of $Ins(1,3,4,5,6)P_5$ towards Na^{+n} . Other alternatives were assayed during the model adjustment steps. However, those options failed in fitting the registered chemical shifts. As an example, figure S3 depicts the comparison between the experimental and predicted ³¹P NMR chemical shifts as the pH varies. Using a model without sodium complexes leads to a very poor adjustment of the experimental data (Figure S3a). Even more, all the three Na-species detected are essential. As it is shown in Figure S3b, if just one of the sodium complexes, $[Na_2(H_2L)]^{6-}$, is not taken into account, the model shows an inadequate behaviour for pH values below 10.5 where this species is formed.

Figure S3. ³¹P NMR chemical shifts for Na⁺-Ins(1,3,4,5,6) P_5 system. The experimental data are shown as filled points. The solid lines show the HypNMR expected tendency according to the model presented in this work. The calculated trend for the chemical shifts without taking the Na⁺ complexes into account (a) or when [Na₂(H₂L)]⁶⁻ is ignored (b) are depicted as dotted lines.

References

- 1 M. Borkovec and G. J. M. Koper, Anal. Chem., 2000, 72, 3272-3279.
- 2 N. Veiga, J. Torres, G. González, K. Gómez, D. Mansell, S. Freeman, S. Domínguez and C. Kremer, J. Mol. Struct., 2011, **986**, 75-85.