Bromide ion binding by a dinuclear gold(I) N-heterocyclic carbene complex: A spectrofluorescence and X-ray absorption spectroscopic study

Louise E. Wedlock, Jade B. Aitken, Susan J. Berners-Price and Peter J. Barnard

Electronic Supplementary Information

Contents

1. Table S1: Constraints and restraints used in the MS EXAFS analysis of $1 .\left(\mathrm{PF}_{6}\right)_{2}$ in DMSO.
2. XFit Data Analysis - Determinacy, Goodness-of-Fit and Monte-Carlo Error Analysis
3. Table S2: Paths and importance factors from the analysis using MS model (Table 1), for the MS refinement of the EXAFS of $\mathbf{1} .\left(\mathrm{PF}_{6}\right)_{2}$.
4. ${ }^{1} \mathrm{H}$ NMR spectrum of $[1]\left(\mathrm{PF}_{6}\right)_{2}$ in d_{6}-DMSO

Table S1 Constraints and restraints used in the MS EXAFS analysis of $\mathbf{1}$. $\left(\mathrm{PF}_{6}\right)_{2}$ in DMSO.

Mean displacement factor constraints (\AA^{2})	$\begin{aligned} & \sigma_{(\mathrm{C} 1)}^{2}=\sigma_{(\mathrm{CC})}^{2} \\ & \sigma_{(\mathrm{N} 4)}^{2}=\sigma_{(\mathrm{NS})}^{2}=\sigma_{(\mathrm{NV})}^{2}=\sigma_{(\mathrm{NV})}^{2} \\ & \sigma_{(\mathrm{C}))}^{2}=\sigma_{(\mathrm{C} 9)}^{2}=\sigma_{(\mathrm{Cl10)}}^{2}=\sigma_{(\mathrm{Cl11)}}^{2} \end{aligned}$
Mean displacement factor restraints $\left(\AA^{2}\right)$	$\sigma_{i}^{2}>0.0005\{0.0001\}$ where i is all shells $\sigma_{i}^{2}<0.02\{0.01\}$ where i is all shells
Bond length restraints (\AA)	$\begin{aligned} & \mathrm{C}(1)-\mathrm{Au}(0) \sim=2.03\{0.05\} \\ & \mathrm{C}(2)-\mathrm{Au}(0) \sim=2.03\{0.05\} \\ & \mathrm{C}(1)-\mathrm{N}(5) \sim=1.38\{0.05\} \\ & \mathrm{C}(5)-\mathrm{C}(9) \sim=1.40\{0.05\} \\ & \mathrm{C}(8)-\mathrm{C}(9) \sim=1.35\{0.05\} \\ & \mathrm{C}(8)-\mathrm{N}(4) \sim=1.40\{0.05\} \\ & \mathrm{N}(4)-\mathrm{C}(1) \sim=1.38\{0.05\} \\ & \mathrm{C}(2)-\mathrm{N}(6) \sim=1.38\{0.05\} \\ & \mathrm{N}(6)-\mathrm{C}(11) \sim=1.40\{0.05\} \\ & \mathrm{C}(10)-\mathrm{C}(11) \sim=1.35\{0.05\} \\ & \mathrm{C}(10)-\mathrm{N}(7) \sim=1.40\{0.05\} \\ & \mathrm{N}(7)-\mathrm{C}(2) \sim=1.38\{0.05\} \\ & \hline \end{aligned}$
Bond angle restraints (${ }^{\circ}$)	$\begin{aligned} & \hline \mathrm{Au}(0)-\mathrm{C}(1)-\mathrm{N}(5) \sim=127\{5\} \\ & \mathrm{Au}(0)-\mathrm{C}(1)-\mathrm{N}(4) \sim=127\{5\} \\ & \mathrm{C}(1)-\mathrm{N}(5)-\mathrm{C}(9) \sim=110\{5\} \\ & \mathrm{N}(5)-\mathrm{C}(1)-\mathrm{N}(4) \sim=106\{5\} \\ & \mathrm{N}(5)-\mathrm{C}(9)-\mathrm{C}(8) \sim=107\{5\} \\ & \mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(4) \sim=107\{5\} \\ & \mathrm{C}(8)-\mathrm{N}(4)-\mathrm{C}(1) \sim=110\{5\} \\ & \mathrm{Au}(0)-\mathrm{C}(2)-\mathrm{N}(6) \sim=127\{5\} \\ & \mathrm{Au}(0)-\mathrm{C}(2)-\mathrm{N}(6) \sim=127\{5\} \\ & \mathrm{C}(2)-\mathrm{N}(6)-\mathrm{C}(11)-\mathrm{N}(6) \sim=110\{5\} \\ & \mathrm{N}(6)-\mathrm{C}(2)-\mathrm{N}(7) \sim=106\{5\} \\ & \mathrm{N}(6)-\mathrm{C}(11)-\mathrm{C}(10) \sim=107\{5\} \\ & \mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(7) \sim=107\{5\} \\ & \mathrm{C}(10)-\mathrm{N}(7)-\mathrm{C}(2) \sim=110\{5\} \\ & \hline \end{aligned}$
Symmetry restraints	$\begin{aligned} & z i=0, \text { where } i \text { is all shells except } \mathrm{Au}(3) \\ & x \mathrm{Au}(3)=0 \\ & y \mathrm{Au}(3)=0 \\ & x \mathrm{~N}(4)=x \mathrm{~N}(5) \\ & x \mathrm{~N}(6)=x \mathrm{~N}(7) \\ & x \mathrm{C}(8)=x \mathrm{C}(9) \\ & x \mathrm{C}(10)=x \mathrm{C}(11) \\ & x \mathrm{C}(1)=-x \mathrm{C}(2) \\ & x \mathrm{~N}(4)=-x \mathrm{~N}(7) \\ & x \mathrm{~N}(5)=-x \mathrm{~N}(6) \\ & x \mathrm{C}(8)=-x \mathrm{C}(10) \\ & x \mathrm{C}(9)=-x(11) \\ & y \mathrm{C}(1)=y \mathrm{C}(2) \\ & y \mathrm{~N}(4)=-y \mathrm{~N}(5) \\ & y \mathrm{~N}(6)=-y \mathrm{~N}(7) \\ & y \mathrm{C}(8)=-y \mathrm{C}(9) \\ & y \mathrm{C}(10)=-y \mathrm{C}(11) \\ & y \mathrm{~N}(6)=y \mathrm{~N}(5) \\ & y \mathrm{~N}(7)=y \mathrm{~N}(4) \\ & y \mathrm{C}(10)=y \mathrm{C}(8) \\ & y \mathrm{C}(11)=y \mathrm{C}(9) \end{aligned}$
Occupancy (N) restraints	$\mathrm{N}_{i}=1$, where i is all shells

XFit Data Analysis - Determinacy, Goodness-of-Fit and Monte-Carlo Error Analysis

Determinacy

The number of parameters being fitted, p , compared to the number of independent information data points (independent points in the EXAFS plus the number of independent structural parameters), N_{i}, was calculated to give the degree of determinacy $\mathrm{N}_{\mathrm{i}} / \mathrm{p}$. If this ratio is <1, then the model is considered to be underdetermined and a unique fit is not possible. In all cases the ratio was >1 and, hence, the models were overdetermined. The value of N_{i} is given by: ${ }^{1}$

$$
\begin{equation*}
N_{i}=2(\Delta r)(\Delta k) / \pi+\Sigma[D(N-2)+1] \tag{1}
\end{equation*}
$$

where D is the number of dimensions in which the refinement takes place and N is the number of atoms in the unit. ${ }^{2}$

Goodness-of-Fit (Residual)

The method of determining the goodness of fit was through an R value where R is given by:

$$
\begin{equation*}
R=\left(\chi^{2} / \chi_{\text {calculated }=0}^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

where χ^{2} is the quantity minimized during the refinement and χ^{2} calculated $=0$ is the value of χ^{2} when the calculated EXAFS is uniformly $0 .{ }^{3}$ Residual R values of $\leq 20 \%$ were considered reasonable for MS models, and relatively high ($>20 \%$) values of R are explained by the exclusion of multiple-scattering contributions on the SS models. ${ }^{2,4}$

Monte-Carlo Error Analysis

Monte Carlo analyses were conducted to estimate the rms deviations in final parameters arising from the noise in the data. Two consecutive sets of 16×16 Monte-Carlo cycles were calculated and the resulting rms errors were combined with systematic errors to determine the final error estimates. The probable errors in the $\mathrm{Au}-\mathrm{C}$ and $\mathrm{Au} \cdot \cdots \mathrm{Au}$ bond lengths were estimated as $\left[\sigma_{\mathrm{r}}^{2}+\sigma_{\mathrm{s}}^{2}\right]^{1 / 2}$, where σ_{r} and σ_{s} represent contributions from the random and systematic errors, respectively. The random (statistical) errors due to noise in the data were estimated by Monte Carlo calculations, ${ }^{3}$ and the systematic errors were assigned a conservative consensus value, $0.02 \AA \AA^{5}$

The following applies to tables of multiple scattering pathways presented in the supporting information: ${ }^{a}$ The number of legs represents the path travelled by the photoelectron originating from and returning to the XAFS absorber $\mathrm{Au}(0)$. ${ }^{b}$ The total distance travelled by the photoelectron ($R_{\text {eff }}$) is twice the value of $R_{\mathrm{as} .}{ }^{c}$ The importance factor (given to 2 d.p.), represents the percent contribution of a path relative to the strongest path $\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow$ $\mathrm{Au}(0)$, including contribution from the Debye-Waller Factors. All pathways have a maximum of 5 legs per MS pathway, curve and plane wave filters of 3% and 2%, respectively, $R_{\text {eff }} \leq 10$ Å.

Table S2 Paths and importance factors from MS analysis (Table 1), for the MS refinement of the EXAFS of 1. $\left(\mathrm{PF}_{6}\right)_{2}$.

Atoms in MS Pathway	Legs a	Deg	$R_{\text {as }}(\AA)^{b}$	Importance Factor c
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	2	2	2.03	100.00%
$\mathrm{Au}(0) \rightarrow \mathrm{Au}(3) \rightarrow \mathrm{Au}(0)$	2	1	3.02	20.45%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{Au}(0)$	2	4	3.06	100.00%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(6) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{Au}(0)$	3	8	3.23	100.00%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{N}(6) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{Au}(0)$	4	4	3.40	30.40%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	3	2	4.06	17.00%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{Au}(0)$	4	2	4.06	32.47%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	4	2	4.06	9.57%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{Au}(0)$	3	4	4.16	6.03%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(10) \rightarrow \mathrm{Au}(0)$	2	4	4.25	28.73%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(9) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	3	8	4.28	64.64%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{N}(6) \rightarrow \mathrm{N}(7) \rightarrow \mathrm{Au}(0)$	4	8	4.33	21.17%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{C}(9) \rightarrow \mathrm{C}(1)$	3	4	4.30	42.92%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(10) \rightarrow \mathrm{N}(7) \rightarrow \mathrm{Au}(0)$	3	8	4.36	43.09%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{C}(8) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	4	8	4.38	55.71%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(7) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{N}(7) \rightarrow \mathrm{Au}(0)$	4	4	4.43	24.06%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{Au}(0)$	4	4	4.43	5.63%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	5	4	4.50	11.14%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(6) \rightarrow \mathrm{C}(11) \rightarrow \mathrm{N}(6) \rightarrow \mathrm{Au}(0)$	4	4	4.46	22.57%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(8) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	4	8	4.53	39.22%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{C}(9) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	5	8	4.55	41.91%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{Au}(0)$	5	8	4.60	12.52%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	5	8	4.60	28.98%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{C}(9) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	5	8	4.63	36.46%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(9) \rightarrow \mathrm{N}(4) \rightarrow \mathrm{Au}(0)$	3	8	4.77	9.88%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{C}(11) \rightarrow \mathrm{N}(7) \rightarrow \mathrm{Au}(0)$	4	8	4.79	10.43%
$\mathrm{Au}(0) \rightarrow \mathrm{N}(7) \rightarrow \mathrm{C}(10) \rightarrow \mathrm{N}(6) \rightarrow \mathrm{Au}(0)$	4	8	4.87	4.55%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(9) \rightarrow \mathrm{C}(8) \rightarrow \mathrm{Au}(0)$	3	4	4.92	5.45%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(8) \rightarrow \mathrm{N}(5) \rightarrow \mathrm{C}(1) \rightarrow \mathrm{Au}(0)$	4	8	4.94	11.53%
$\mathrm{Au}(0) \rightarrow \mathrm{C}(11) \rightarrow \mathrm{C}(10) \rightarrow \mathrm{C}(2) \rightarrow \mathrm{Au}(0)$	4	8	4.95	13.32%

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013
[1] $\left(\mathrm{PF}_{6}\right)_{2}$

NNNNN~
NNNNN

${ }^{1} \mathrm{H}$ NMR Spectrum of $[\mathbf{1}]\left(\mathrm{PF}_{6}\right)_{2}$ in d6-DMSO

References

1. N. Binsted, R. W. Strange and S. S. Hasnain, Biochemistry, 1992, 31, 12117-12125.
2. A. Levina, R. S. Armstrong and P. A. Lay, Coord. Chem. Rev., 2005, 249, 141-160.
3. P. J. Ellis and H. C. Freeman, J. Synchrotron Radiat., 1995, 2, 190-195.
4. A. M. Rich, R. S. Armstrong, P. J. Ellis, H. C. Freeman and P. A. Lay, Inorg. Chem., 1998, 37, 5743-5753.
5. S. J. Gurman, J. Synchrotron Radiat., 1995, 2, 56-63.
