Luminescent N,O-Chelated Chroman-BF₂ Complexes: Structural Variants of BODIPY

Roop Shikha Singh, Mahendra Yadav, Rakesh Kumar Gupta, Rampal Pandey and Daya Shankar Pandey*

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi - 221 005 (U. P.) India.

Contents

1. ¹ H, ¹³ C NMR spectra of 1-9	S2-S10
2. Scheme S1 for the formation of chromans	S11
3. HRMS spectra of 4 and 8	S12
4. The C-H··· π interactions in 7 along crystallographic-' <i>a</i> ' axis	
5. The C-H··· π interactions in 8 along crystallographic-' <i>b</i> ' axis	
6. Absorption spectra of 1-9	S14
7. Fluorescence spectra of 1-9	S14
8. Cyclic voltammograms of ligands 1-6	
9. HOMO, LUMO plots of 4	S16
10. HOMO, LUMO plots of 5	S17
11. HOMO, LUMO plots of 6	S18
12. TGA plot of 7-9	S19
13. Tables for optimized energies and bond lengths/angles	

Figure S1 1 H (a) and 13 C (b) NMR spectra of 1

Figure S3: 1 H (a) and 13 C (b) NMR spectra of 3

Figure S4 1 H (a) and 13 C (b) NMR spectrum of 4

Figure S5 1 H (a) and 13 C (b) NMR spectrum of 5

Figure S6 1 H (a) and 13 C (b) NMR spectrum of 6

Figure S7 1 H (a) and 13 C (b) NMR spectrum of 7

Figure S8 1 H (a) and 13 C (b) NMR spectrum of 8

(b)

Figure S9 1 H (a) and 13 C (b) NMR spectrum of 9

Scheme S1 Scheme showing formation of chromans 4-6 instead of dipyrromethenes 4'-6'

Figure S10: HRMS data of compound 4 (a) and 8 (b)

Figure S11 The C-H··· π interactions in 7 along crystallographic-'a' axis

Figure S12 The C-H \cdots π interactions in **8** along crystallographic-'b' axis

Figure S13 Absorption spectra of 1-9 (c , $10 \,\mu$ M).

Figure S14 Fluorescence spectra of 1-9 (c, $10 \,\mu\text{M}$)

Figure S15 Cyclic voltammograms of ligands 1 (a), 2 (b), 3(c), 4 (d), 5(e), 6(f)

Figure S16 HOMO (a) and LUMO (b) envelop plots for 4

Figure S17 HOMO (a), LUMO (b) envelop plots for 5

Figure S18 HOMO (a), LUMO (b) envelop plots for 6

(c)

Figure S19 TGA plot of **7** (a), **8** (b), **9** (c)

1		2		6	
O1 -C9	1.357(3)	O1- C9	1.346(2)	N1-C16	1.3663(2)
N1- C11	1.366(3)	C11- N1	1.371(2)	N1-C11	1.4355(2)
N1- C14	1.374(3)	C14- N1	1.422(3)	C10-C11	1.5128(2)
N2- C18	1.357(4)	N2- C18	1.423(3)	C10-C21	1.4428(2)
N2- C15	1.370(3)	C15- N2	1.379(3)	C10-C14	1.3768(2)
C7- C8	1.438(4)	C8- C7	1.459(2)	C13-C14	1.4600(2)
C8- C9	1.337(4)	C8- C9	1.354(2)	N2-C20	1.346(2)
C10- C15	1.511(4)	C10- C15	1.508(2)	O1-C21	1.2385(12)
C10 -C11	1.515(4)	C10- C11	1.510(2)		
7	,	8 9		9	
B1- F2	1.369(3)	B1 -F2	1.380(3)	B1 -F2	1.376(5)
B1- F1	1.389(3)	B1- F1	1.379(3)	B1- F1	1.373(5)
B1- O1	1.483(3)	B1 –O1	1.487(3)	B1 –O1	1.468(5)
B1- N1	1.542(3)	B1 -N1	1.554(3)	B1 -N1	1.552(5)
N2- C15	1.388(3)	N2 -C9	1.436(3)	N2 –C12	1.442(4)
N2- C8	1.437(3)	N2 -C16	1.383(3)	N2 -C14	1.389(4)
N1- C13	1.396(3)	C1 -C10	1.379(3)	C10 -C11	1.360(4)
01 - C1	1.324(2)	C9 -C10	1.513(3)	C11 -C12	1.507(5)
C1- C9	1.365(3)	C11 -C12	1.393(3)	C20 -C21	1.385(6)
C8- C9	1.512(3)				
C13-C14	1.395(3)				

Table S1. Selected bond distances (a) and Angles (b) in 1, 2, 6 and 7-9

1		2		6	
C1 -O1- C9	117.6(2)	O1- C18-C10	125.96(2)	N2-C17-C14	123.54(1)
C8- C9 -O1	125.7(3)	C17-O1-C18	117.67(1)	C11-N1-C13	111.95(1)
C8-C10- C15	114.1(2)	C10- C5- C6	113.48(1)	C7-O2-C11	111.90(1)
C8-C10- C11	114.2(2)	C10- C5- C6	113.96(1)	C10-C14-C13	107.05(1)
C7 -C8- C9	119.3(3)	C11-C10-C18	118.99(2)	C10-C14-C17	130.18(1)
				C11-C10-C21	116.42(1)

7	7 8		8	9		
N1-B1-F1	108.19(2)	N1-B1-F1	109.79(2)	N1-B1-F1	107.7(3)	
N1-B1-F2	109.4(2)	N1-B1-F2	107.9(2)	N1-B1-F2	109.6(4)	
O1-B1-F1	108.9(2)	O1-B1-F1	109.1(2)	O1-B1-F1	106.0(4)	
O1-B1-F2	106.92(2)	O1-B1-F2	106.47(2)	O1-B1-F2	108.2(3)	
C8-N2-C15	112.73(2)	C9-N2-C16	113.09(2)	C12-N2-C17	137.1(3)	
C9-C14-15	106.5(2)	C8-O2-C9	110.67(2)	C7-O2-C12	110.9(3)	
C9-C14-C13	127.78(2)	C10-C15-C14	127.95(2)	C11-C13-C14	106.8(3)	
C12-C13-C14	129.21(2)	C10-C15-C16	106.4(2)	C11-C13-C18	128.1(3)	

Compound	Energy (kcal mol ⁻¹)
4	-5.98077×10^{5}
4'	-5.98063×10^{5}
5	-6.22751×10^{5}
5'	-6.22737×10^{5}
6	-6.72093×10 ⁵
6'	-6.71452×10^{5}
7	-7.3871×10^{5}
8	-7.63384×10^{5}
9	-8.12727×10^{5}

Table S2. Optimized energies for 4-9 and dipyrrins 4'- 6'