Coordination self-assembly of tetranuclear Pt(II) macrocycles with organometallic

backbone for sensing of acyclic dicarboxylic acids

Sankarasekaran Shanmugaraju,^a Arun Kumar Bar,^a Harshal Jadhav,^a Dohyun Moon,^{*b} and

Partha Sarathi Mukherjee*^a

^aDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560

012, India. Fax: 91-80-2360-1552; Tel; 91-80-2293-3352

E-mail: psm@ipc.iisc.ernet.in

^bPohang Accelerator Laboratory, Pohang, Kyungbook-790784, South Korea

E-mail: <u>dmoon@postech.ac.kr</u>

Fig. S1. IR spectra of 1, 2a–2c.

Fig. S2. ¹H NMR spectra of 1,4-bis[*trans*-Pt(PEt₃)₂I(ethynyl)]benzene (**1a**) recorded in CDCl₃ with the peak assignments.

Fig. S3. ³¹P NMR spectra of 1,4-bis[*trans*-Pt(PEt₃)₂I(ethynyl)]benzene (1a) recorded in CDCl₃.

Fig. S4. ¹³C NMR spectra of 1,4-bis[*trans*-Pt(PEt₃)₂I(ethynyl)]benzene (1a) recorded in CDCl₃.

Fig. S5. ¹³C NMR spectra of the binuclear acceptor **1** recorded in CDCl₃.

Fig. S6. ESI-MS spectrum of the acceptor 1 recorded in acetonitrile. Inlet; experimentally observed isotopic distribution for $[1 - NO_3^-]^+$.

Fig. S7. Excerpt of the ESI-MS spectra of the macrocycle **2a** corresponding to $[2a - 2NO_3^-]^{2+}$ fragment recorded in CH₃NO₂-CH₃CN.

Fig. S8. ¹H NMR spectra of the macrocycle 2b recorded in CD₃NO₂ with the peak assignments.

Fig. S9. ³¹P NMR spectra of the macrocycle **2b** recorded in CDCl₃-CD₃OD solvent mixture with the peak assignments.

Fig. S10. Excerpt of the ESI-MS spectra of the macrocycle **2b** corresponding to $[2b - 3NO_3^-]^{3+}$ fragment recorded in CH₃NO₂-CH₃CN.

Fig. S11. ¹H NMR spectra of the macrocycle **2c** recorded in CDCl₃-CD₃OD solvent mixture with the peak assignments.

Fig. S12. ³¹P NMR spectra of the macrocycle 2c recorded in CD₃NO₂ solvent mixture with the peak assignments.

Fig. S13. Excerpts of the ESI-MS spectra of the macrocycle **2c** corresponding to $[2c - 2NO_3^{-}]^{2+}$ fragment recorded in CH₃NO₂-CH₃CN.

Fig. S14. Jobs plot for the fluorescence titration data of 2a and maleic acid.

1240.71

Table S1. Crystallographic data and refinement parameters of 1a and 2b.

	la	26
empirical formulae	$C_{34}H_{64}I_2P_4Pt_2$	$C_{108}H_{152}N_4P_8Pt_4$
formulae weight	1240.71	2534.46
crystal system	monoclinic	monoclinic
space group	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n
Т, К	150	100
λ (Mo Ka), Å	0.71073	0.75000
a, Å	9.395(6)	17.950(4)
b, Å	13.955(9)	9.6820(19)
c, Å	17.449(11)	37.661(8)
α, °	90	90
β, °	93.387(11)	102.19(3)

γ, °	90	90
V, Å ³	2284(3)	6398(2)
Z	2	2
ρ_{calcd} , g cm ⁻¹	1.804	1.316
μ , mm ⁻¹	7.630	4.982
GOF ^a	1.023	1.093
$R1^{b} [I > 2\sigma(I)]$	0.0817	0.0578
$wR2^{c} [I > 2\sigma(I)]$	0.1782	0.1748

 $\overline{{}^{a}\text{GOF}} = \{\Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}]/(n - p)\}^{1/2}, \text{ where } n \text{ and } p \text{ denotes the number of data points and the number of parameters, respectively. } {}^{b}\text{R1} = (\Sigma \text{ II}F_{0}\text{I} - \text{I}F_{c} \text{ II})/\Sigma \text{ I}F_{0}\text{I}; {}^{c}\text{w}\text{R2} = \{\Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}]/\Sigma[w(F_{0}^{2})^{2}]\}^{1/2}, \text{ where } w = 1/[\sigma^{2}(F_{0}^{2}) + (aP)^{2} + (bP)] \text{ and } P = [\max (0,F_{0}^{2}) + 2F_{c}^{2}]/3.$

Table S2: Selected Bonds Distances (Å) and Angles (deg) for 1a and 2b.

	1a							
	Pt(1)-C(1)	1.954	(19)	Pt(1)-P(2)	2.320(6)	Pt(1)-	P(1)	2.321(6)
	Pt(1)-I(1)	2.670	4(19)	P(1)-C(9)	1.899(15)	P(1)-0	C(6)	1.916(18)
	P(1)-C(7B)	1.928	(19)	P(1)-C(7A)	1.949(18)	P(2)-0	C(8T)	1.905(19)
	P(2)-C(1T)	1.913	(19)	P(2)-C(3T)	1.937(19)	P(2)-0	C(9T)	1.94(2)
	P(2)-C(6T)	1.939	(19)	P(2)-C(5T)	1.948(18)			
C(1)-Pt(1)-I(1)		179.7(6)		P(2)-Pt(1)-I(1)	92.22	(16)	
	P(1)-Pt(1)-I(1)	91.22	(15)	C(9)-P(1)-C(6)	105.0	(13)
	C(9)-P(1)-C(7B)	109.3	(17)	C(6)-P(1)-C(7B)	93(2)	
	C(9)-P(1)-C(7A)	100.9	(17)	C(6)-P(1)-C(7A)	113.6	(19)

C(7B)-P(1)-C	(7A)	21(2)		C(9)-P(1)-Pt(1)	115.6(8)
C(6)-P(1)-Pt(1)	112.0(11)	C(7B)-P(1)-Pt	(1)	118.9(16)
C(7A)-P(1)-Pt	.(1)	109.4(12)	C(8T)-P(2)-C((1T)	118(2)	
C(8T)-P(2)-C	(3T)	38.9(19	9)	C(1T)-P(2)-C((3T)	106(2)	
C(8T)-P(2)-C	(9T)	105(3)		C(1T)-P(2)-C((9T)	40(2)	
C(8T)-P(2)-Pt	(1)	123.7(15)	C(1T)-P(2)-Pt	(1)	117.8(15)
C(3T)-P(2)-Pt	(1)	114.8(16)	C(9T)-P(2)-Pt	(1)	111(2)	
C(6T)-P(2)-Pt	(1)	111.1(18)	C(5T)-P(2)-Pt	(1)	108.7(13)
			2b				
Pt(1)-C(30)#1	1.96(3))	Pt(1)-N(1)	2.10(2)	Pt(1)-F	P (2)	2.281(8)
Pt(1)-P(1)	2.283(8)	P(1)-C(5P)	1.74(3)	P(1)-C	(1P)	1.83(3)
P(1)-C(3P)	1.89(3))	Pt(2)-C(21)	1.99(3)	Pt(2)-N	N(2)	2.077(19)
Pt(2)-P(3)	2.291(8)	Pt(2)-P(4)	2.327(7)	P(3)-C	(13P)	1.77(3)
P(3)-C(17P)	1.83(4))	P(3)-C(15P)	1.89(5)	P(3)-C	(65P)	1.97(5)
C(30)#1-Pt(1)	-N(1)	176.6(11)	C(30)#1-Pt(1)	-P(2)	85.0(9))
N(1)-Pt(1)-P(2	2)	93.2(6))	C(30)#1-Pt(1)	-P(1)	87.2(9))
N(1)-Pt(1)-P(1)	l)	94.3(6))	P(2)-Pt(1)-P(1)	170.0(3)
C(5P)-P(1)-C((1P)	109.1(18)	C(5P)-P(1)-C((3P)	103.1(16)
C(1P)-P(1)-C((3P)	101.9(17)	C(5P)-P(1)-Pt	(1)	113.8(13)
C(1P)-P(1)-Pt	(1)	115.8(9)	C(3P)-P(1)-Pt	(1)	111.7(14)
C(2P)-C(1P)-I	P (1)	116(2)		C(21)-Pt(2)-N	(2)	179.4(9)
C(21)-Pt(2)-P	(3)	89.0(8))	N(2)-Pt(2)-P(3	3)	91.7(5))

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

C(21)-Pt(2)-P(4)	88.8(8)	N(2)-Pt(2)-P(4)	90.6(5)
P(3)-Pt(2)-P(4)	176.2(4)		