Nematogenic tetracatenar lanthanidomesogens

Karel Goossens,*^{*a*} Duncan W. Bruce,^{*b*} Rik Van Deun,^{*c*} Koen Binnemans^{*a*} and Thomas Cardinaels*^{*d*}

^{*a*} Department of Chemistry, KU Leuven, Celestijnenlaan 200F (PO box 2404), 3001 Heverlee (Belgium). Fax: +32 16 327992; Tel: +32 16 327431;

E-mail: karel.goossens@chem.kuleuven.be.

^b Department of Chemistry, University of York, Heslington, York, YO10 5DD (United Kingdom).

^c f-Element Coordination Chemistry Laboratory, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – building S3, 9000 Gent (Belgium).

^d Institute for Nuclear Materials Sciences (SCK·CEN), Boeretang 200, 2400 Mol (Belgium). Fax: +32 14 321216; Tel: +32 14 333185;

E-mail: thomas.cardinaels@sckcen.be.

Supporting Information

Table of contents

1.	General experimental details	S2
2.	Synthesis	S 3
3.	Thermal behaviour: differential scanning	
	calorimetry (DSC)	S4
4.	Polarising optical microscopy (POM) textures	S7
5.	Additional spectroscopic data	S14
6.	References	S15

1. General experimental details

Elemental analyses (carbon, hydrogen and nitrogen) were obtained from a CE Instruments EA-1110 elemental analyser. The results in percentages were interpreted allowing a deviation of $\pm 0.4\%$.

Optical textures of the mesophases were observed with an Olympus BX60 polarising optical microscope equipped with a LINKAM THMS600 heating stage and a LINKAM TMS93 programmable temperature controller. DSC traces were recorded under helium with a Mettler-Toledo DSC822e module. Heating/cooling rates are specified in the captions of the thermograms. Indium was used as a standard for temperature and enthalpy calibrations.

NIR luminescence spectra were recorded on an Edinburgh Instruments FLSP920 spectrofluorimeter, using a 450 W xenon lamp as the steady-state excitation source and a Hamamatsu R5509-72 NIR PMT detector. Emission spectra have been corrected for detector response.

Molecular models were obtained with the Chem3D software package from CambridgeSoft.

2. Synthesis

Ligands 6-8, 6-10 and 6-12 were prepared as described elsewhere.¹

Nd(tta)₃·2H₂O was prepared according to a literature procedure for Eu(tta)₃·2H₂O.² Calcd. for C₂₄H₁₂F₉NdO₆S₃·2H₂O ($M = 843.80 \text{ g mol}^{-1}$): C 34.16, H 1.91. Found: C 34.39, H 2.03.

For the synthesis of neodymium(III) complex **7**-8, ligand **6**-8 (0.046 mmol, 0.050 g) and Nd(tta)₃·2H₂O (0.046 mmol, 0.039 g) were dissolved in 10 mL of toluene. The mixture was heated to 115 °C for 3 hours, after which the solvent was removed under reduced pressure. The crude product was dissolved in a minimal amount of toluene, and *n*-hexane was added until precipitation occurred. The yellow-orange precipitate was filtered off, washed with *n*-hexane and dried *in vacuo* at 50 °C. Yield: 80% (0.070 g). Calcd. for C₁₀₀H₁₀₀F₉N₂NdO₁₀S₃ ($M = 1901.29 \text{ g mol}^{-1}$): C 63.17, H 5.30, N 1.47 (as a comparison: calcd. for the ligand **6**-8: C 83.47, H 8.11, N 2.56). Found: C 63.02, H 5.43, N 1.39.

Neodymium(III) complex 7-10 was prepared in a similar way as 7-8. The precipitate obtained by adding *n*-hexane to a solution of the complex in a minimal amount of toluene proved to be difficult to filter off. Therefore, after leaving it for 10 minutes in a freezer, the toluene/*n*-hexane mixture was centrifuged (3500 rpm). Then the supernatant was removed. The residue was dissolved again in a minimal amount of toluene, and *n*-hexane was added until the appearance of a precipitate, after which it was left in a freezer for 10 minutes. Then the mixture was again subjected to centrifugation. This procedure was repeated three more times. The final yellow-orange precipitate was dried *in vacuo* at 50 °C. Yield: 78% (0.017 g). Calcd. for $C_{108}H_{116}F_9N_2NdO_{10}S_3$ (M = 2013.50 g mol⁻¹): C 64.42, H 5.81, N 1.39. Found: C 64.75, H 5.99, N 1.63.

Neodymium(III) complex 7-12 was prepared in a similar way as 7-10. Yield: 66% (0.057 g). Calcd. for $C_{116}H_{132}F_9N_2NdO_{10}S_3$ ($M = 2125.72 \text{ g mol}^{-1}$): C 65.54, H 6.26, N 1.32. Found: C 65.47, H 6.51, N 1.62.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

3. Thermal behaviour: differential scanning calorimetry (DSC)

Figure S1. DSC traces of (a) compound 7-8 (2^{nd} heating/cooling cycle, 1^{st} heating run up to 235 °C); (b) compound 7-10 (2^{nd} heating/cooling cycle, 1^{st} heating run up to 235 °C); (c) compound 7-12 (solid line: 2^{nd} heating/cooling cycle (between 0 °C and 235 °C), dashed line: 3^{rd} heating run); (d) the commercially available liquid crystal K15 (= 4-pentyl-4'-cyanobiphenyl, 5CB; red line, 2^{nd} heating/cooling cycle) and compound

7-12 doped (1 wt.%) into K15 (blue line, 2^{nd} heating/cooling cycle). The heating/cooling rate was 10 °C min.⁻¹, and the measurements were performed under a helium atmosphere. Abbreviations: Cr, Cr₁, Cr₂ = crystalline phase; SmA = smectic A phase; N = nematic phase; Iso = isotropic liquid phase; dec. = thermal decomposition. Endothermic peaks point upwards. The bottom figure shows the slight increase in clearing point (T_{N-Iso}) by doping 5CB with 1 wt.% of the high-clearing compound 7-12.

4. Polarising optical microscopy (POM) textures

Neodymium(III) complex 7-8

Figure S2. Schlieren texture of the nematic phase of complex 7-8 at 215 °C on cooling from the isotropic liquid.

Neodymium(III) complex 7-8: 1 wt.% solution in 5CB

Figure S3. Marble and thread-like texture of the nematic phase of a 1 wt.% solution of complex 7-8 in 5CB, at 28 °C.

Figure S4. Thread-like texture of the nematic phase of a 1 wt.% solution of complex 7-8 in 5CB, at 28 °C.

Neodymium(III) complex 7-10

Figure S5. Schlieren texture of the nematic phase of complex 7-10 at 212 °C on cooling from the isotropic liquid.

Figure S6. Schlieren texture of the nematic phase of complex 7-10 at 212 °C on cooling from the isotropic liquid.

Figure S7. Marble texture of the nematic phase of complex 7-10 at 212 °C on cooling from the isotropic liquid.

Figure S8. Marble and thread-like texture of the nematic phase of complex 7-10 at 212 °C on cooling from the isotropic liquid.

Figure S9. Gradual formation of the monotropic SmA phase of complex 7-10 on cooling from the nematic phase: (a) at 212 °C; (b) at 207 °C; (c) at 205 °C ; (d) at 202 °C (the nematic schlieren texture changes into a paramorphotic texture).

Neodymium(III) complex 7-12

Figure S10. Focal conic fan texture of the SmA phase of complex 7-12 at 202 °C on cooling from the isotropic liquid (on the right-hand side, a homeotropically aligned area is seen below the air bubble).

Figure S11. Focal conic fan texture of the SmA phase of complex 7-12 at 206 °C on cooling from the isotropic liquid.

Figure S12. Focal conic fan texture of the SmA phase of complex 7-12 at 206 °C on cooling from the isotropic liquid.

5. Additional spectroscopic data

Figure S13. NIR luminescence spectrum of 7-12 (1 wt.%) doped into 5CB: the black curve represents the virgin sample, prepared at room temperature (nematic phase); the red curve represents the same sample, heated to 45 °C (isotropic phase); the green curve represents the sample cooled from 45 °C back to room temperature (nematic phase).

6. References

- T. Cardinaels, J. Ramaekers, P. Nockemann, K. Driesen, K. Van Hecke, L. Van Meervelt, G. Wang, S. De Feyter, E. Fernandez Iglesias, D. Guillon, B. Donnio, K. Binnemans and D. W. Bruce, *Soft Matter*, 2008, 4, 2172-2185.
- 2 K. Binnemans, P. Lenaerts, K. Driesen and C. Görller-Walrand, J. Mater. Chem., 2004, 14, 191-195.