New Long-Lasting Phosphor Material: A Novel Metal-Organic

Framework Showing Intriguing Luminescent Performance

Feng Luo, Gong-Ming Sun, An-min Zheng, Shi-xun Lian, Ying-liang Liu, Xue Feng Feng, and Yue-ying Chu

(1) The synthesis of 1.

A DMF/H₂O solution (6mL, 5:1) of Zn(NO₃)₂, L, PhCOOH in a ratio of 1:1:2 was sealed in a Teflon reactor, and heated at 115° C for 2 days, and then cooled to room temperature at 3°C/h. Subsequently, block crystals were obtained in 80% yield based on Zn. Element analysis (%) for **1**: calc: C 50.70, H 3.40, N 11.83; found: C 50.65, H 3.44, N 11.79.

(2) The single crystal data of 1.

The structure was solved by direct methods and refined using the shelxl-97 program. Monoclinic, space group C2/c, a = 24.0674(3) Å, b = 5.14990(10) Å, c = 15.5647(2)Å, $\beta = 97.6260(10)$ V = 1912.10(5)Å³, Z = 4, $D_{calcd} = 1.646$ gcm⁻³, for all data: R1= 0.0268, Rw2= 0.0699, GOF = 1.084.

(3) Materials and Physical Measurements.

The acylamide ligand of L is synthesized according to literature method.¹ Others were analytically pure from commercial sources and used without further purification. Elemental analyses were performed on a Vario EL-II analyzer. Single crystal X-ray diffraction is carried out on Bruker Smart Breeze. X-ray powder diffraction (XRPD) data were recorded in a Bruker D8 ADVANCE diffractometer. Photoluminescence was performed on an Edinburgh FLS920 luminescence spectrometer. The long-lasting phosphorescence (LLP) emission spectra and afterglow intensity decay curves were measured the Hitachi F-4500 fluorescence on spectrophotometer. Thermoluminescence (TL) measurements were performed on the FJ-427A TL meter (Beijing Nuclear Instrument Factory). Thermal analyses were carried out in air atmosphere using SETARAM LABSYS equipment with a heating rate of 5°C/min.

¹ a) Luo, F.; Zheng, J. -M.; Batten, S. R. *Chem. Comm.* **2007**, 3744. b) Luo, F.; Che, Y. -X.; Zheng, J. M. *Microporous and Mesoporous Materials*, **2009**, *117*, 486.

(4) Calculation Details.

TD-DFT calculations were performed by using B3LYP20 functional. The LANL2DZ basis sets were employed for Zn, where C, H, O, N atoms are calculated by 6-31g(d) basis sets. The initial ground-state geometries directly obtained from the

X-ray crystal structures. The calculation is carryout out by the Gaussian 03 software package.²

² Dennington, R.; Todd, K.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView, version 3.09; Semichem, Inc.: Shawnee Mission, KS, **2003**.

Figure S1. View of the simulated XRD patterns from the single crystal data and the experimental XRD patterns.

Figure S2. The TG plot of 1.

Figure S4. The photograph of compound **1**, excited at 340 nm (green) and 351 nm (blue), and the photograph of compound **1** after the removal of UV excitation.

Figure S5. The afterglow intensity decay curve for the 485 nm emission after the excitation source is switched off at different times (t=1 s, 5s, 10 s, 30 s, 60 s)

Figure S6. TL glow curves of 1 (the samples are excitated at 254 nm for 5 min).