Supporting Information

Copper-64 labelling of triazacyclononane-triphosphinate chelators

Jakub Šimeček, Hans-Jürgen Wester and Johannes Notni

Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner-Str. 3, D-85748 Garching, Germany, email:johannes.notni@tum.de

1. Materials and reagents

⁶⁴Cu was obtained from ACOM (Montecosaro Scalo, Italy) in 0.1 M HCl. Content of non-⁶⁴Cu metals according to the manufacturer: Pb \leq 0.129 μg/mL, Ni \leq 0.394 μg/ml, Cu \leq 0.165 μg/mL, Zn \leq 0.338 μg/mL, Fe \leq 0.465 μg/mL. NODAGA-RGD was purchased from ABX (Radeberg, Germany), NOTA^[1], DOTA^[2], TRAP-H^[3], TRAP-Pr^[4], NOPO^[5], TRAP(RGD)₃^[6] and NOPO-RGD^[5] were prepared as described in the literature. A sample of DEDPA was kindly provided by Carlos Platas Iglesias, Universidade da Coruña, Spain. Buffers (HEPES, sodium acetate) and water (Ultrapur) were purchased from Merck (Darmstadt, Germany).

2. ⁶⁴Cu-labelling

Non-buffered solutions: For experiments at pH 3, 100 μ L of ⁶⁴Cu in 0.1 M HCl was mixed with 9.9 mL of water. 90 μ L of that solution was mixed with 10 μ L of ligand solution, resulting in ligand concentrations of 0.1, 0.3, 1, 3 and 10 μ M. Activity of added ⁶⁴Cu was in the range of 1.9–2.5 MBq (0.2–0.3 pmol). Labelling was done for 5 min at 25 °C, whereafter ⁶⁴Cu incorporation was determined by radio-TLC (see below).

Labelling in NaOAc buffer: Mixing 10 μ L of 100 μ M solution (1 nmol of ligand in total) of TRAP(RGD)₃, NOPO-RGD and NODAGA-RGD with 5 μ L of 1 M aq. NaOAc and additon of 7 μ L of ⁶⁴Cu in 0.1 M HCl (~ 3 MBq) resulted in pH 5.6. The mixtures was left standing for 5 min at 25 °C and then evaluated by radio-TLC (see below).

Labelling in HEPES buffer: TRAP(RGD)₃, NOPO-RGD and NODAGA-RGD (10 μ L of 100 μ M solution, 1 nmol) were mixed with 80 μ L of aq. HEPES solution (7.2 g of HEPES + 6 mL water) and 10 μ L of ⁶⁴Cu (~ 4 MBq) in 0.1 M HCl was added, which resulted in pH 5.7. The mixtures were incubated for 5 min at 37 °C and evaluated by radio-TLC (see below).

Preparation of the tracer for in vivo injection: TRAP(RGD)₃ (5 nmol) in water (50 μ L) was mixed with 5 μ L of aq. HEPES solution and 0.1 M NaOH (40 μ L). ⁶⁴Cu in 0.1 M HCl (50 μ L, 120 MBq, 13.2 pmol) was added (final pH ~ 4.4) and the solution was heated for 30 min to 95 °C. ⁶⁴Cu-labelled tracer was purified by solid phase extraction, using a C8 light cartridge (Waters), preconditioned with 10 mL of ethanol and 10 mL of water. The reaction mixture was passed over the cartridge, purged with 1 mL of water in order to remove free ⁶⁴Cu, and the product eluted with 1 mL of ethanol. After addition of water (1 mL) and PBS (1 mL), the ethanol was evaporated in vacuo and the solution simultaneously concentrated to 1 mL. Before injection, the formulation was filtered over a 0.22 μ M sterile filter.

Figure S2: ⁶⁴Cu incorporation as function of chelator concentration.

2.1. Comment on metal-to-ligand ratio and incorporation efficiency

Even though the labelling with low activity of ⁶⁴Cu showed to be highly efficient using low chelator amount, e.g. 0.1–1 nmol (Figure 1), the labelling efficiency showed to be highly dependent on the metal-to-ligand (M:L) ratio. Labelling with higher activity of ⁶⁴Cu and similar ligand concentration did not lead to comparable activity incorporation. Therefore, for preparation of higher doses, e.g. for injection purposes, the strategy similar to that for routine labelling with ¹⁷⁷Lu is of choice, i.e., calculation of a well-defined, known optimal excess of chelator. On the contrary, when labelling of e.g. 1 nmol of TRAP chelators with ⁶⁸Ga, quantitative activity incorporation independent on the absolute activity is observed.

For example, labelling of 0.1 nmol ($c = 1 \mu$ M) of precursors with ~ 2.2 MBq of ⁶⁴Cu (~ 0.24 pmol, M:L ratio 1:417) resulted in quantitative ⁶⁴Cu incorporation at r.t. Contrary, labelling of a ten times higher concentration of TRAP(RGD)₃ ($c = 10 \mu$ M, 1 nmol) with ⁶⁴Cu (120 MBq, 13.2 pmol, pH 3.1 adjusted with aq. HEPES) resulted in a M:L ratio of 1:75, which was too low to yield labelled product, even at 95 °C. However, a radiochemical yield of > 95 % was reached by labelling 5 nmol of the precursor (M:L ratio is then 1:378). In further experiments, adjusting the pH to 4.4 helped to reduce the reaction time to 20 min at 95 °C. Specific activities were typically ranging around 20 GBq/µmol.

3. Analysis

⁶⁴Cu incorporation by chelators was evaluated by TLC (silica 60 coated alumina sheets, Merck), using 0.1 M aq. EDTA as mobile phase. Labelled chelators/conjugates stay at the origin ($R_f = 0$), whereas unbound ⁶⁴Cu is complexed by EDTA and moves with the front ($R_f = 0.9-1.0$).

4. EDTA challenge and stability in human plasma

The chelators (1–2 nmol of each) were labelled with ~ 12 MBq of 64 Cu, using a mixture of 64 Cu in 0.1 M HCl (7 µL) and 1 M NaOAc (5 µL), pH 5.7, 5 min reaction at 95 °C. Full labelling was confirmed by TLC. Then, each sample was diluted with PBS to reach a volume of 50 µL. 20 µL of the solutions were added to 100 µL of 0.1 M EDTA and left standing at room temperature. Samples for TLC analysis were withdrawn after 1, 2 and 12 h.

The stability of ⁶⁴Cu-labelled NOPO-RGD, TRAP(RGD)₃ and NODAGA-RGD was tested also in human plasma, for which purpose 20 μ L of the solutions containing labelled conjugate (prepared as described before) were transferred to 100 μ L of plasma, and incubated at room temperature. Samples for TLC analysis were taken after 1, 2 and 12 h of incubation.

5. logP determination

50 μ L (~ 0.5 MBq) of PBS solution of a purified tracer was mixed with 450 μ L of PBS and 500 μ L of n-octanol. After 1 min of vigorous shaking, the phases were separated by centrifugation and the activity contained in 100 μ L aliquots of both water and n-octanol phases were measured in a γ -counter (1480 WIZARDTM, PerkinElmer Wallac). Experiments were repeated 8 times.

6. Small animal PET imaging

The animal model for $\alpha_v\beta_3$ integrin expression was described before in detail.^[6] Briefly, CD-1 athymic nude mice were used, bearing tumor xenografts (M21 human melanoma with high $\alpha_v\beta_3$ integrin expression) on the right shoulder.

MicroPET imaging was performed using small animal PET/CT scanner (Siemens Inveon). ⁶⁸Ga-TRAP(RGD)₃ (12 MBq, prepared as described^[6]) or ⁶⁴Cu- TRAP(RGD)₃ in PBS (30 MBq) was injected to the tail vain of a mouse anaesthetised with isoflurane. PET data was recorded for 15 min, 75 min p.i. (⁶⁸Ga- and ⁶⁴Cu-TRAP(RGD)₃) and 18 h p.i. (⁶⁴Cu-TRAP(RGD)₃ only). Images were reconstructed using Inveon Research Workplace software; 3D ordered-subsets expectation maximum (OSEM3D) algorithm without scanner and attenuation correction. All animal experiments were performed in accordance with general animal welfare regulations in Germany.

References

- ¹ S. Grös, H. Elias, *Inorg. Chim. Acta* **1996**, *251*, 347–354.
- ² J. F. Desreux, *Inorg. Chem.* **1980**, *19*, 1319–1324.
- ³ J. Šimeček, M. Schulz, J. Notni, J. Plutnar, V. Kubíček, J. Havlíčková, P. Hermann, *Inorg. Chem.* **2012**, *51*, 577–590.
- ⁴ J. Notni, P. Hermann, J. Havlíčková, J. Kotek, V. Kubíček, J. Plutnar, N. Loktionova, P. J. Riss, F. Rösch, I. Lukeš, *Chem. Eur. J.* **2010**, *16*, 7174–7185.
- ⁵ J.Šimeček, O. Zemek, P. Hermann, H.-J. Wester, J. Notni, *ChemMedChem* **2012**, *7*, 1375–1378.
- ⁶ J. Notni, J. Šimeček, P. Hermann, H. J. Wester, Chem. Eur. J. 2011, 17, 14718–14722.