# Hydration of Arsenic Oxyacid Species

Johan Mähler,<sup>a</sup> Ingmar Persson<sup>a</sup> and Roger Herbert<sup>b</sup> <sup>a</sup> Department of Chemistry, Swedish University of Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala, Sweden, <sup>b</sup> Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden.

**Supplementary Material** 

## Appendix 1 - References from Crystal structure database search

Table S1 - Reported crystal structures of  $H_3AsO_4$ : The molecule has three longer distances corresponding to protonated oxygen atoms and one shorter distance corresponding to a non-protonated oxygen atom.

| H <sub>3</sub> AsO <sub>4</sub> |              |       |       |            |            |            |            |   |                                                                                          |     |
|---------------------------------|--------------|-------|-------|------------|------------|------------|------------|---|------------------------------------------------------------------------------------------|-----|
|                                 | (1/4)        | (3/4) |       |            |            |            |            |   |                                                                                          |     |
| <b>Structure</b>                | <u>Short</u> | Long  | Mean  | <u>-01</u> | <u>-02</u> | <u>-03</u> | <u>-04</u> |   |                                                                                          | Ref |
| 34686                           | 1.608        | 1.682 | 1.663 | 1.608      | 1.652      | 1.688      | 1.705      | Å | $(H_3AsO_4)_2(H_2O)$                                                                     | 1   |
| 163455                          | 1.622        | 1.673 | 1.660 | 1.622      | 1.625      | 1.681      | 1.712      | Å | $Cs_4(SeO_4)(HSeO_4)_2(H_3AsO_4)$                                                        | 2   |
| CUHDAK                          | 1.659        | 1.676 | 1.672 | 1.659      | 1.660      | 1.677      | 1.690      | Å | ((CH <sub>3</sub> ) <sub>3</sub> NCH <sub>2</sub> COO)·H <sub>3</sub> AsO <sub>4</sub>   | 3   |
| CUHDAK01                        | 1.650        | 1.673 | 1.667 | 1.650      | 1.653      | 1.674      | 1.691      | Å | ((CH <sub>3</sub> ) <sub>3</sub> NCH <sub>2</sub> COO) · D <sub>3</sub> AsO <sub>4</sub> | 4   |
| CUHDAK02                        | 1.663        | 1.689 | 1.683 | 1.663      | 1.675      | 1.683      | 1.710      | Å | ((CH <sub>3</sub> ) <sub>3</sub> NCH <sub>2</sub> COO) · D <sub>3</sub> AsO <sub>4</sub> | 5   |
| PASWIP                          | 1.640        | 1.698 | 1.684 | 1.640      | 1.691      | 1.700      | 1.703      | Å | $C_{24}H_{20}P^+$ , H <sub>3</sub> AsO <sub>4</sub> , Cl <sup>-</sup>                    | 6   |
| RIGFOD                          | 1.645        | 1.689 | 1.678 | 1.645      | 1.679      | 1.690      | 1.699      | Å | $(C_2H_5)_4N(H_2AsO_4)(H_3AsO_4)$                                                        | 7   |
| RIGFUJ                          | 1.637        | 1.686 | 1.674 | 1.637      | 1.679      | 1.687      | 1.693      | Å | $(C_6H_{14}N_2)(H_2AsO_4)_2(H_3AsO_4)$                                                   | 7   |
| XICNUS                          | 1.644        | 1.698 | 1.684 | 1.644      | 1.690      | 1.699      | 1.704      | Å | $(C_6H_{10}N_3O_2)(H_2AsO_4)(H_3AsO_4)$                                                  | 8   |
| YASKEJ                          | 1.639        | 1.693 | 1.680 | 1.639      | 1.677      | 1.699      | 1.704      | Å | C <sub>4</sub> H <sub>9</sub> NO <sub>3</sub> , H <sub>3</sub> AsO <sub>4</sub>          | 9   |
| No of struct.                   |              |       | 10    |            |            |            |            |   |                                                                                          |     |
| Mean                            | 1.641        | 1.686 | 1.674 | 1.641      | 1.668      | 1.688      | 1.701      |   |                                                                                          |     |
| Stdev                           | 0.016        | 0.010 | 0.009 | 0.016      | 0.020      | 0.009      | 0.008      |   |                                                                                          |     |
| Ditto*2                         | 0.033        | 0.019 | 0.018 | 0.033      | 0.041      | 0.019      | 0.015      |   |                                                                                          |     |

Not included

-

#### Table S2 - $H_2AsO_4^-$ structure solutions without differentiation between long and short As-O distances: These data have not been used.

<u>H<sub>2</sub>AsO<sub>4</sub>=</u>

|                  |                  |            | (2/4) | (2/4) |   |                                                                   |            |
|------------------|------------------|------------|-------|-------|---|-------------------------------------------------------------------|------------|
| <u>Structure</u> | <u>Shor</u> Long | <u>Mea</u> |       |       |   |                                                                   | <u>Ref</u> |
| 27101            |                  | 1.760      |       |       | Å | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub> ·H <sub>2</sub> O | 10         |
| 28155            |                  | 1.685      |       |       | Å | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub> ·H <sub>2</sub> O | 11         |
| 29092            |                  | 1.741      |       |       | Å | KH <sub>2</sub> AsO <sub>4</sub> ·H <sub>2</sub> O                | 12         |
| 39928            |                  | 1.687      |       |       | Å | KH <sub>2</sub> AsO <sub>4</sub>                                  | 13         |
| 44799            |                  | 1.742      |       |       | Å | CsH <sub>2</sub> AsO <sub>4</sub>                                 | 14         |
| 66203            |                  | 1.675      |       |       | Å | $NH_4H_2AsO_4$                                                    | 15         |
| 66204            |                  | 1.677      |       |       | Å | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                   | 15         |
| 66205            |                  | 1.680      |       |       | Å | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                   | 15         |
| 66206            |                  | 1.680      |       |       | Å | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                   | 15         |
| 93926            |                  | 1.686      |       |       | Å | KH <sub>2</sub> AsO <sub>4</sub>                                  | 16         |
| 93927            |                  | 1.687      |       |       | Å | $KH_2AsO_4$                                                       | 16         |
| 93928            |                  | 1.686      |       |       | Å | $KH_2AsO_4$                                                       | 16         |
| 93929            |                  | 1.688      |       |       | Å | $KH_2AsO_4$                                                       | 16         |
| 9767             |                  | 1.685      |       |       | Å | $CsD_2AsO_4$                                                      | 17         |
| 174061           |                  | 1.680      |       |       | Å | $NH_4H_2AsO_4$                                                    | 18         |
| 200219           |                  | 1.684      |       |       | Å | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                   | 19         |
| No of struct     |                  | 16         |       |       |   |                                                                   |            |
| Mean             |                  | 1 605      |       |       | Å |                                                                   |            |
| Ivicali          |                  | 1.075      |       |       | A |                                                                   |            |

Stdev

0.027

Å

|                  | (2/4)        | (2/4) |       |                       |              |            |                |        |                                                                                                                                    |     |
|------------------|--------------|-------|-------|-----------------------|--------------|------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| <u>Structure</u> | <u>Short</u> | Long  | Mean  | <u>-01</u>            | <u>-O2</u>   | <u>-03</u> | <u>-04</u>     |        |                                                                                                                                    | Ref |
| 62024            | 1.653        | 1.720 | 1.687 | 1.647                 | 1.659        | 1.713      | 1.727          | Å      | LiH <sub>2</sub> AsO <sub>4</sub>                                                                                                  | 20  |
| 66208            | 1.659        | 1.708 | 1.683 | 1.658                 | 1.659        | 1.708      | 1.708          | Å      | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                                                                                    | 15  |
| 66209            | 1.658        | 1.710 | 1.684 | 1.656                 | 1.659        | 1.710      | 1.710          | Å      | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                                                                                    | 15  |
| 66210            | 1.658        | 1.713 | 1.686 | 1.658                 | 1.658        | 1.712      | 1.714          | Å      | NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub>                                                                                    | 15  |
| 109787           |              |       |       |                       |              |            |                |        |                                                                                                                                    |     |
| (JAXQIJ)         | 1.654        | 1.714 | 1.684 | <u>1.653</u>          | <u>1.654</u> | 1.714      | 1.714          | Å      | $(C(NH_2)_3) (H_2AsO_4)$                                                                                                           | 21  |
| 173457           | 1 (50        | 1 705 | 1 (01 | 1 ( 10                | 1 ( ( (      | 1 704      | 1 705          | 8      |                                                                                                                                    | 22  |
| (LOCLAR)         | 1.658        | 1.705 | 1.681 | 1.649                 | 1.666        | 1.704      | 1.705          | А      | $(C_2H_7N_4S)$ $(H_2AsO_4)$                                                                                                        |     |
| (66207)          | 1 659        | 1 706 | 1 682 | 1 659                 | 1 659        | 1 703      | 1 708          | Å      | NH4H2ASO4                                                                                                                          | 18  |
|                  | 1.654        | 1 703 | 1.678 | 1 653                 | 1 654        | 1 700      | 1 705          | Å      | $(C_{5}H_{14}N_{2})(H_{2}A_{5}O_{4})_{2}$                                                                                          | 23  |
| AMINIT           | 1.653        | 1.703 | 1.683 | 1 643                 | 1 662        | 1.700      | 1.705          | Å      | $(C_{5}H_{12}N)(H_{2}A_{5}O_{4})$                                                                                                  | 24  |
| CENROD           | 1.655        | 1.713 | 1.684 | 1.653                 | 1.669        | 1.710      | 1.718          | Å      | $(\mathbf{p}-\mathbf{C})\mathbf{C}_{4}\mathbf{H}_{4}\mathbf{N}\mathbf{H}_{2}$ - $\mathbf{H}_{2}\mathbf{A}\mathbf{S}\mathbf{O}_{4}$ | 25  |
| DAVOAV           | 1.658        | 1.707 | 1.681 | 1.653                 | 1.662        | 1.000      | 1.716          | Å      | $(H_2NCH_2COOH)H_2AsO_4$                                                                                                           | 26  |
| FONEIV           | 1.654        | 1.704 | 1.680 | 1.651                 | 1.656        | 1.701      | 1.700          | Å      | $(C_4H_8N_2O)(H_2A_8O_4)_2$                                                                                                        | 27  |
| GEL HIO10        | 1.650        | 1.707 | 1.000 | 1.657                 | 1.662        | 1.701      | 1.713          | Å      | $(C_4H_8H_3O_2)(H_2H_3O_4)_2$                                                                                                      | 28  |
|                  | 1.662        | 1.714 | 1.007 | 1.658                 | 1.665        | 1.709      | 1.710          | Å      | $(n-C_1C_1H_1NH_2)-H_2AsO_4)_2$                                                                                                    | 29  |
| VODSAL           | 1.002        | 1.714 | 1.000 | 1.629                 | 1.676        | 1.708      | 1.715          | Å      | $(\text{H}_{2}\text{NC}(\Omega\text{H})_{2})$ $\text{H}_{2}\text{AsO}_{4}$                                                         | 30  |
| KORSAL 01        | 1.037        | 1.707 | 1.082 | 1.038                 | 1.070        | 1.099      | 1./13          | Å      | $(H_1NC(OH)_3)H_2ASO_4$                                                                                                            | 31  |
| KORSALUI         | 1.03/        | 1.709 | 1.085 | $\frac{1.041}{1.642}$ | 1.677        | 1.700      | 1./11<br>1.712 | Å      | $(H_3NC(OH)_3)H_2ASO_4$<br>$(H_2NC(OH)_2)H_2ASO_4$                                                                                 | 32  |
| NUKSALU2         | 1.000        | 1.708 | 1.084 | 1.045                 | 1.0//        | 1.702      | 1./15          | Å      | $(\Gamma_1^{(CH)})$ NH )H AsO                                                                                                      | 33  |
| OBUYOA           | 1.655        | 1.705 | 1.680 | 1.641                 | 1.009        | 1.704      | 1.705          | Å      | $(C(CH_3)_3)(H_3)(H_2ASO_4)$                                                                                                       | 34  |
| OBUYOA01         | 1.655        | 1.709 | 1.682 | 1.642                 | 1.668        | 1.707      | 1./10          | A<br>Å | $(U(CH_3)_3NH_3)H_2ASO_4$                                                                                                          | 35  |
| PIFBUC           | 1.645        | 1.709 | 1.6// | 1.637                 | 1.653        | 1.703      | 1./14          | A<br>° | $(\Pi_3 \mathbb{N}(\mathbb{C}\Pi_2)_2 \mathbb{N}\Pi_3)(\Pi_2 \mathbb{A} \mathbb{S}\mathbb{O}_4)_2$                                 | 36  |
| QIBLAO           | 1.658        | 1.709 | 1.684 | 1.657                 | 1.659        | 1.70/      | 1./11          | A<br>° | $(CH_3(CH_2)_4NH_3)H_2ASO_4$                                                                                                       | 37  |
| QIJXAI           | 1.654        | 1.708 | 1.681 | 1.653                 | 1.655        | 1.706      | 1.709          | A<br>° | $(CH_3(CH_2)_6NH_3)H_2ASO_4$                                                                                                       | 7   |
| RIGFOD           | 1.651        | 1.698 | 1.675 | 1.651                 | 1.651        | 1.698      | 1.698          | Å      | $(C_2H_5)_4N(H_2ASO_4)(H_3ASO_4)$                                                                                                  | 7   |
| RIGFUJ           | 1.654        | 1.705 | 1.679 | 1.648                 | 1.659        | 1.704      | 1.705          | A<br>° | $(C_{6}\Pi_{14}\Pi_{2})(\Pi_{2}ASO_{4})_{2}(\Pi_{3}ASO_{4})$                                                                       | 38  |
| SEZVOJ           | 1.651        | 1.703 | 1.677 | 1.648                 | 1.653        | 1.69/      | 1.708          | A<br>° | $(C_5H_{14}N_2)(H_2ASO_4)_2$                                                                                                       | 38  |
| SEZXOL           | 1.658        | 1.709 | 1.683 | 1.650                 | 1.666        | 1.700      | 1.717          | Å      | $(C_5H_{14}N_2)(H_2ASO_4)_2$                                                                                                       | 30  |
| TEVPAM           | 1.661        | 1.715 | 1.688 | 1.658                 | 1.663        | 1.709      | 1.721          | Å      | $C_4H_{12}N_2$ , 2(H <sub>2</sub> AsO <sub>4</sub> )                                                                               | 40  |
| TICBIR           | 1.654        | 1.716 | 1.685 | 1.648                 | 1.660        | 1.715      | 1.717          | Å      | $(C_6H_{13}N_2)(H_2ASO_4)_2 \cdot H_2O$                                                                                            | 41  |
| VAMZOY           | 1.661        | 1.711 | 1.686 | 1.660                 | <u>1.661</u> | 1.702      | 1.719          | Å      | $(C_7H_8NO)H_2ASO_4$                                                                                                               | 42  |
| WANVAI           | 1.655        | 1.709 | 1.682 | <u>1.649</u>          | <u>1.660</u> | 1.699      | 1.719          | Å      | $(C_5H_6N_3O_2)H_2ASO_4$                                                                                                           | 42  |
| WEDDEP           | 1.643        | 1.698 | 1.670 | 1.642                 | <u>1.644</u> | 1.699      | 1.696          | Å      | $(C_6H_9N_2)H_2ASO_4$                                                                                                              | 44  |
| WOVMUP           | 1.650        | 1.701 | 1.676 | <u>1.645</u>          | <u>1.656</u> | 1.698      | 1.705          | Å      | $(CH_3(CH_2)_5NH_3)H_2AsO_4$                                                                                                       | 44  |
| WOVNAW           | 1.650        | 1.704 | 1.677 | <u>1.641</u>          | <u>1.659</u> | 1.701      | 1.708          | Å      | $(CH_3(CH_2)_7NH_3)H_2AsO_4$                                                                                                       | 44  |
| XAPWOB           | 1.653        | 1.713 | 1.683 | <u>1.638</u>          | <u>1.667</u> | 1.707      | 1.718          | Å      | $(H_3N(CH_2)_3NH_3)(H_2AsO_4)_2$                                                                                                   | 45  |
| XECJAR           | 1.650        | 1.704 | 1.677 | <u>1.643</u>          | <u>1.656</u> | 1.700      | 1.708          | A      | $(C_7H_9CIN)$ H <sub>2</sub> AsO <sub>4</sub> ·H <sub>2</sub> O                                                                    | 40  |
| XEPKOT           | 1.654        | 1.703 | 1.678 | <u>1.633</u>          | <u>1.674</u> | 1.703      | 1.703          | Å      | $(C_6H_9N_2)H_2AsO_4$                                                                                                              | 4/  |
| XICNUS           | 1.657        | 1.709 | 1.683 | 1.657                 | 1.657        | 1.702      | 1.715          | Å      | $(C_6H_{10}N_3O_2)(H_2AsO_4)(H_3AsO_4)$                                                                                            | 0   |
| ZUZVUL           | 1.653        | 1.702 | 1.677 | <u>1.647</u>          | <u>1.658</u> | 1.700      | 1.704          | Å      | $(C_7H_{10}NO)H_2AsO_4$                                                                                                            | 48  |
| No of struct     |              |       | 38    |                       |              |            |                |        |                                                                                                                                    |     |
| Average          | 1.655        | 1.708 | 1.681 | 1.649                 | 1.661        | 1.704      | 1.711          |        |                                                                                                                                    |     |
| Stdev            | 0.004        | 0.005 | 0.004 | 0.007                 | 0.007        | 0.005      | 0.007          |        |                                                                                                                                    |     |
| Ditto *2         | 0.009        | 0.010 | 0.008 | 0.015                 | 0.014        | 0.010      | 0.013          |        |                                                                                                                                    |     |
| Not included:    |              |       |       |                       |              |            |                |        |                                                                                                                                    |     |
| 4284             | 1.655        | 1.729 | 1.692 | 1.650                 | 1.660        | 1.711      | 1.748          | Å      | NaH <sub>2</sub> AsO <sub>4</sub> ·H <sub>2</sub> O                                                                                | 49  |

Table S3 -  $H_2AsO_4$  crystal structures: The ions have two longer distances corresponding to protonated oxygen atoms and two shorter distances corresponding to non-protonated oxygen atoms

| 201168 | 1.674 | 1.721 | 1.698 | 1.674 | 1.674 | 1.721 | 1.721 Å | $CsD_2AsO_4$                                                       | 50 |
|--------|-------|-------|-------|-------|-------|-------|---------|--------------------------------------------------------------------|----|
| HQUOAS | 1.665 | 1.704 | 1.684 | 1.649 | 1.681 | 1.702 | 1.705 Å | C <sub>10</sub> H <sub>10</sub> NO)H <sub>2</sub> AsO <sub>4</sub> | 51 |

**Table S4 - HAsO\_4^{2-} crystal structures:** The ions have one longer As-O distance corresponding to the protonated oxygen atom, and three shorter distances corresponding to non-protonated oxygen atoms.

|                  | (3/4)        | (1/4) |       |              |              |              |            |   |                                                                                                           |     |
|------------------|--------------|-------|-------|--------------|--------------|--------------|------------|---|-----------------------------------------------------------------------------------------------------------|-----|
| <b>Structure</b> | <u>Short</u> | Long  | Mean  | <u>-01</u>   | -02          | <u>-03</u>   | <u>-04</u> |   |                                                                                                           | Ref |
| 9063             | 1.669        | 1.742 | 1.687 | 1.660        | 1.668        | 1.679        | 1.742      | Å | Na <sub>2</sub> HAsO <sub>4</sub> ·7H <sub>2</sub> O                                                      | 52  |
| 14283            | 1.678        | 1.747 | 1.696 | 1.672        | 1.678        | 1.685        | 1.747      | Å | (NH <sub>4</sub> ) <sub>2</sub> HAsO <sub>4</sub>                                                         | 53  |
| 14300            | 1.669        | 1.742 | 1.687 | 1.659        | 1.670        | 1.678        | 1.742      | Å | Na <sub>2</sub> HAsO <sub>4</sub> ·7H <sub>2</sub> O                                                      | 53  |
| 14301            | 1.662        | 1.728 | 1.679 | 1.654        | 1.662        | 1.670        | 1.728      | Å | [Na <sub>2</sub> (H <sub>2</sub> O) <sub>7</sub> ]HAsO <sub>4</sub>                                       | 54  |
| CASLAK           | 1.672        | 1.730 | 1.687 | 1.661        | 1.675        | 1.681        | 1.730      | Å | (H <sub>3</sub> N(CH <sub>2</sub> ) <sub>3</sub> NH <sub>3</sub> )HAsO <sub>4</sub> ·H <sub>2</sub> O     | 55  |
| IKEZUT           | 1.666        | 1.730 | 1.682 | 1.658        | 1.667        | 1.673        | 1.730      | Å | (H <sub>3</sub> NCH(CH <sub>3</sub> )CH <sub>2</sub> NH <sub>3</sub> )HAsO <sub>4</sub> ·H <sub>2</sub> O | 56  |
| INEBUY           | 1.674        | 1.732 | 1.688 | 1.666        | 1.674        | 1.681        | 1.732      | Å | $(C_6H_5CH_2NH_3)_2HAsO_4 \cdot H_2O$                                                                     | 57  |
| JAXMUR           | 1.670        | 1.734 | 1.686 | 1.664        | 1.666        | 1.681        | 1.734      | Å | (H <sub>3</sub> NCH <sub>2</sub> CH(CH <sub>3</sub> )NH <sub>3</sub> )HAsO <sub>4</sub>                   | 58  |
| REZKOX           | 1.669        | 1.726 | 1.683 | 1.663        | 1.668        | 1.676        | 1.726      | Å | $(C_4H_{12}N_2)H_2AsO_4$ · $H_2O$                                                                         | 59  |
| YASGUV           | 1.672        | 1.747 | 1.691 | <u>1.664</u> | <u>1.673</u> | <u>1.679</u> | 1.747      | Å | $(C_7H_{16}N)_2HAsO_4 \cdot H_2O$                                                                         | 60  |
| No of struct     |              |       | 10    |              |              |              |            |   |                                                                                                           |     |
| Mean             | 1.670        | 1.736 | 1.687 | 1.662        | 1.670        | 1.678        | 1.736      | Å |                                                                                                           |     |
| Stdev            | 0.004        | 0.008 | 0.005 | 0.005        | 0.005        | 0.004        | 0.008      | Å |                                                                                                           |     |
| Ditto*2          | 0.009        | 0.016 | 0.009 | 0.010        | 0.010        | 0.009        | 0.016      | Å |                                                                                                           |     |
| Not included     |              |       |       |              |              |              |            |   |                                                                                                           |     |
| FUCNIA           | 1.599        | 1.733 | 1.633 | 1.463        | 1.657        | 1.678        | 1.733      | Å | (H <sub>3</sub> N(CH <sub>2</sub> ) <sub>2</sub> NH <sub>3</sub> )HAsO <sub>4</sub>                       | 61  |

**Table S5 - AsO\_4^{3-} crystal structures:** All As-O distances are unprotonated and equivalent in this symmetrical ion. (4/4)

|                  | · · ·        |      |       |       |       |       |       |   |                                                     |            |
|------------------|--------------|------|-------|-------|-------|-------|-------|---|-----------------------------------------------------|------------|
| <b>Structure</b> | <u>Short</u> | Long | Mean  | -01   | -02   | -03   | -04   |   |                                                     | <u>Ref</u> |
| 1319             | 1.685        |      | 1.685 | 1.671 | 1.683 | 1.686 | 1.700 | Å | (NH <sub>4</sub> ) <sub>3</sub> AsO <sub>4</sub>    | 62         |
| 2832             | 1.674        |      | 1.674 | 1.666 | 1.666 | 1.682 | 1.682 | Å | CaKAsO <sub>4</sub> (H <sub>2</sub> O) <sub>8</sub> | 63         |
| 24548            | 1.657        |      | 1.657 | 1.657 | 1.657 | 1.657 | 1.657 | Å | $CsMg(AsO_4)(H_2O)_6$                               | 64         |
| 36533            | 1.688        |      | 1.688 | 1.674 | 1.677 | 1.700 | 1.700 | Å | $Cs_2NaAsO_4$                                       | 65         |
| 87465            | 1.689        |      | 1.689 | 1.683 | 1.683 | 1.694 | 1.694 | Å | $SrK(AsO_4)(H_2O)_8$                                | 66         |
| 412391           | 1.677        |      | 1.677 | 1.670 | 1.670 | 1.679 | 1.689 | Å | $Cs_3AsO_4$                                         | 67         |
| 419835           | 1.659        |      | 1.659 | 1.655 | 1.655 | 1.661 | 1.663 | Å | $Rb(Mg(H_2O)_6)(AsO_4)$                             | 68         |
| 419836           | 1.674        |      | 1.674 | 1.671 | 1.671 | 1.673 | 1.68  | Å | $Rb(Mg(H_2O)_6)(AsO_4)$                             | 68         |
| BIRSUO           | 1.661        |      | 1.661 | 1.658 | 1.659 | 1.659 | 1.668 | Å | $[Co(H_2NCH_2CH_2NH_2)_3]_6AsO_4 \cdot 3H_2O$       | 69         |
| No of struct     |              |      | 9     |       |       |       |       |   |                                                     |            |
| Mean             | 1.674        |      | 1.674 |       | 1.667 | 1.669 | 1.677 |   |                                                     |            |
| Stdev            | 0.012        |      | 0.012 |       | 0.009 | 0.011 | 0.016 |   |                                                     |            |
| Ditto*2          | 0.025        |      | 0.025 |       | 0.018 | 0.021 | 0.031 |   |                                                     |            |
| Not included     |              |      |       |       |       |       |       |   |                                                     |            |
| 412392           | 1.702        |      | 1.702 | 1.700 | 1.700 | 1.702 | 1.705 | Å | $Cs_3AsO_4$                                         | 67         |

|                              | 1/3          | 2/3   |       | 1     | 2     | 3     |   |                                                                                      |    |
|------------------------------|--------------|-------|-------|-------|-------|-------|---|--------------------------------------------------------------------------------------|----|
| <u>Structure</u>             | <u>Short</u> | Long  | Mean  | AsO1  | AsO2  | AsO3  |   |                                                                                      |    |
| BUTDUP                       | 1.652        | 1.719 | 1.697 | 1.652 | 1.712 | 1.726 | Å | $C_6H_9AsNO_4^+, Cl^-, 2(H_2O)$                                                      | 70 |
| GORKAZ                       | 1.652        | 1.696 | 1.681 | 1.652 | 1.695 | 1.697 | Å | $C_6H_2AsF_5O_3$                                                                     | 71 |
| JACFUO                       | 1.652        | 1.708 | 1.689 | 1.652 | 1.707 | 1.708 | Å | $C_{13}H_{11}AsO_4$                                                                  | 72 |
| LACJII                       | 1.651        | 1.712 | 1.691 | 1.651 | 1.699 | 1.724 | Å | C <sub>8</sub> H <sub>10</sub> AsNO <sub>5</sub>                                     | 73 |
| LACJOO                       | 1.650        | 1.709 | 1.689 | 1.65  | 1.707 | 1.711 | Å | C <sub>9</sub> H <sub>12</sub> AsNO <sub>5</sub> , H <sub>2</sub> O                  | 73 |
| LUYLIA                       | 1.655        | 1.694 | 1.681 | 1.655 | 1.693 | 1.695 | Å | $C_3H_{10}As_2O_7$                                                                   | 74 |
| NHXPAS                       | 1.673        | 1.720 | 1.704 | 1.673 | 1.707 | 1.732 | Å | C <sub>6</sub> H <sub>6</sub> AsNO <sub>6</sub>                                      | 75 |
| NHXPAS02                     | 1.653        | 1.697 | 1.682 | 1.653 | 1.689 | 1.704 | Å | C <sub>6</sub> H <sub>6</sub> AsNO <sub>6</sub>                                      | 76 |
| OAPASA01                     | 1.644        | 1.694 | 1.677 | 1.644 | 1.689 | 1.699 | Å | C <sub>6</sub> H <sub>8</sub> AsNO <sub>3</sub>                                      | 77 |
| POVMUI                       | 1.643        | 1.713 | 1.689 | 1.643 | 1.71  | 1.715 | Å | C <sub>6</sub> H <sub>7</sub> AsO <sub>4</sub>                                       | 78 |
| POVNAP                       | 1.660        | 1.699 | 1.686 | 1.66  | 1.696 | 1.701 | Å | C7H8AsNO6                                                                            | 78 |
| PRARSA                       | 1.663        | 1.692 | 1.682 | 1.663 | 1.684 | 1.699 | Å | $C_3H_9AsO_3$                                                                        | 79 |
| SIHTOS                       | 1.667        | 1.709 | 1.695 | 1.667 | 1.706 | 1.712 | Å | $C_{16}H_{13}AsN_2O_{11}S_2, 3(H_2O)$                                                | 80 |
| VAZFOS                       | 1.642        | 1.704 | 1.683 | 1.642 | 1.687 | 1.72  | Å | C <sub>9</sub> H <sub>10</sub> AsNO <sub>4</sub>                                     | 81 |
| WUKKOC01                     | 1.644        | 1.702 | 1.683 | 1.644 | 1.701 | 1.703 | Å | C <sub>10</sub> H <sub>12</sub> AsNO <sub>4</sub>                                    | 82 |
| WUKKOK                       | 1.657        | 1.716 | 1.696 | 1.657 | 1.702 | 1.73  | Å | C <sub>10</sub> H <sub>12</sub> AsNO <sub>4</sub>                                    | 82 |
| XUTFAT                       | 1.651        | 1.705 | 1.687 | 1.651 | 1.703 | 1.706 | Å | $C_{10}H_{12}AsNO_4, 0.5(H_2O)$                                                      | 77 |
| No of struct                 |              |       | 17    |       |       |       |   |                                                                                      |    |
| Mean                         | 1.653        | 1.705 | 1.688 | 1.653 | 1.699 | 1.711 |   |                                                                                      |    |
| Stdev                        | 0.009        | 0.009 | 0.007 | 0.009 | 0.009 | 0.012 |   |                                                                                      |    |
| Ditto*2                      | 0.017        | 0.018 | 0.014 | 0.017 | 0.017 | 0.024 |   |                                                                                      |    |
| Not included                 |              |       |       |       |       |       |   |                                                                                      |    |
| AMBARS                       | 1.728        | 1.779 | 1.762 | 1.728 | 1.777 | 1.781 | Å | C <sub>6</sub> H <sub>8</sub> AsNO <sub>3</sub>                                      | 83 |
| ARSACP                       | 1.624        | 1.726 | 1.692 | 1.624 | 1.72  | 1.731 | Å | C <sub>6</sub> H <sub>7</sub> AsO <sub>3</sub>                                       | 84 |
| ARSACP01                     | 1.651        | 1.748 | 1.716 | 1.651 | 1.743 | 1.753 | Å | C <sub>6</sub> H <sub>7</sub> AsO <sub>3</sub>                                       | 85 |
| OAPASA                       | 1.637        | 1.725 | 1.695 | 1.637 | 1.701 | 1.748 | Å | C <sub>6</sub> H <sub>8</sub> AsNO <sub>3</sub>                                      | 75 |
| WAMFUM                       | 1.604        | 1.721 | 1.682 | 1.604 | 1.703 | 1.739 | Å | C <sub>6</sub> H <sub>6</sub> AsNO <sub>5</sub>                                      | 86 |
| ZAYWOL                       | 1.560        | 1.705 | 1.656 | 1.56  | 1.703 | 1.706 | Å | C <sub>9</sub> H <sub>11</sub> AsN <sub>6</sub> O <sub>3</sub> , 2(H <sub>2</sub> O) | 87 |
| Table S7: R <sub>2</sub> AsC | OH struc     | tures |       |       |       |       |   |                                                                                      |    |

 Table S6: RAsO(OH)2 structures.

|                  | 00011 5010   | ie cui es |       |       |       |
|------------------|--------------|-----------|-------|-------|-------|
|                  | (1/2)        | (1/2)     |       | 1     | 2     |
| <u>Structure</u> | <u>Short</u> | Long      | Mean  | AsO1  | AsO2  |
| LAJJIP           | 1.617        | 1.720     | 1.669 | 1.617 | 1.72  |
| BENJUZ           | 1.638        | 1.713     | 1.676 | 1.638 | 1.713 |
| XEWVAX           | 1.654        | 1.719     | 1.687 | 1.654 | 1.719 |
| TIVMIU           | 1.661        | 1.742     | 1.702 | 1.661 | 1.742 |
| BUASIN           | 1.668        | 1.745     | 1.707 | 1.668 | 1.745 |
| REQQOT           | 1.691        | 1.749     | 1.720 | 1.691 | 1.749 |
|                  |              |           |       |       |       |

 $\begin{array}{cccc} \mathring{A} & C_4 H_7 A s O_2 & & ^{88} \\ \mathring{A} & C_{12} H_{11} A s O_2 & & ^{89} \\ \mathring{A} & C_7 H_9 A s O_2 & & ^{90} \\ \mathring{A} & C_{12} H_{11} A s O_2, C_{12} H_{11} A s O S & & ^{91} \\ \mathring{A} & C_8 H_{19} A s O_2 & & ^{79} \\ \mathring{A} & C_6 H_{19} A s_3 O_{13} W_2, H_2 O & & ^{92} \end{array}$ 

No of struct

| Mean             | 1.655 | 1.731 | 1.693 | 1.655 | 1.731 |
|------------------|-------|-------|-------|-------|-------|
| Stdev            | 0.025 | 0.016 | 0.020 | 0.025 | 0.016 |
| Ditto*2          | 0.051 | 0.031 | 0.039 | 0.051 | 0.031 |
| Not in also de d |       |       |       |       |       |
| Not included     |       |       |       |       |       |
| CADYLA           | 1.608 | 1.625 | 1.617 | 1.608 | 1.625 |
|                  |       |       |       |       |       |

C<sub>2</sub>H<sub>7</sub>AsO<sub>2</sub>

93

**Appendix 2 - Supplementary XAFS material** 



**Figure S1:** As  $K_{\alpha}$  edges of inorganic arsenic compounds. Light red: As(OH)<sub>3</sub>; light orange AsO(OH)<sub>2</sub><sup>-</sup>; light blue AsO<sub>3</sub><sup>-3-</sup>, Red: H<sub>3</sub>AsO<sub>4</sub>; Orange: H<sub>2</sub>AsO<sub>4</sub><sup>-</sup>; green HAsO<sub>4</sub><sup>-2-</sup>; blue AsO<sub>4</sub><sup>-3-</sup>.



**Figure S2:** As  $K_{\alpha}$  edges of inorganic arsenic compounds. Light red: As(OH)<sub>3</sub>; light orange AsO(OH)<sub>2</sub>; light blue AsO<sub>3</sub><sup>3-</sup>, Red: H<sub>3</sub>AsO<sub>4</sub>; Orange: H<sub>2</sub>AsO<sub>4</sub>; green HAsO<sub>4</sub><sup>2-</sup>; blue AsO<sub>4</sub><sup>3-</sup>



**Figure S3:** (Lower functions): EXAFS functions of  $H_3AsO_4$  (red);  $H_2AsO_4^-$  (orange);  $HAsO_4^{2-}$  (green);  $AsO_4^{3-}$  (blue). (Upper functions):  $As(OH)_3$  (light red);  $AsO(OH)_2^-$  (light orange);  $AsO_3^{3-}$  (light blue). All functions but the one for  $H_3AsO_4$  is offset for clarity.

**Table S8:** White line maxima for inorganic arsenic species in varied states of protonation. \*)The literature value reported for trivalent arsenic were obtained at pH 9, and thus speciation  $As(OH)_3/AsO(OH)_2^-$  is unclear. The results are shown with two decimals in order to underline the constant difference between As(V) and As(III) species of the same degree of protonation (see bottom of table), rather than to claim the absolute values with such high certainity.

| Species                                                      | Peak     | Smith   |
|--------------------------------------------------------------|----------|---------|
| Species                                                      |          | ۵۱/۱۹   |
|                                                              | ev       | CV      |
| H <sub>3</sub> AsO <sub>4</sub>                              | 11875.54 |         |
| $H_2AsO_4^-$                                                 | 11875.22 | 11875.3 |
| HAsO4 <sup>2-</sup>                                          | 11875.26 |         |
| AsO <sub>4</sub> <sup>3-</sup>                               | 11875.43 |         |
| As(V)av.                                                     | 11875.36 |         |
|                                                              |          |         |
| As(OH) <sub>3</sub>                                          | 11871.53 | 11871.7 |
| AsO(OH)2                                                     | 11871.22 |         |
| AsO <sub>3</sub> <sup>3-</sup>                               | 11871.43 |         |
| As(III) av.                                                  | 11871.39 |         |
|                                                              |          |         |
| Difference                                                   |          |         |
| H <sub>3</sub> AsO <sub>4</sub> -As(OH) <sub>3</sub>         | 4.01     |         |
| $H_2AsO_4^AsO(OH)_2^-$                                       | 4.00     |         |
| AsO <sub>4</sub> <sup>-</sup> -AsO <sub>3</sub> <sup>-</sup> | 4.00     |         |



**Figure S4:** EXAFS waves for 1) 0.1196M As(OH)3 from NaAsO<sub>2</sub> at pH 3.15 (light red), and 2) a ca 0.5M oversaturated solution of As(OH)<sub>3</sub> from As<sub>2</sub>O<sub>3</sub> at pH 3.6 (brown).



**Figure S5:** EXAFS waves for dimethylarsenate (purple) and monomethylarsenate (turquoise). Data is fitted to models shown with black lines.





**Figure S6:** (Top) LAXS radial distribution curves for a 2.000 mol·dm<sup>-3</sup> aqueous solution of Te(OH)<sub>6</sub>. Upper part: Separate model contributions (offset: 12) of Te-O distances (green line) and the aqueous bulk (orange line). (Middle) Experimental RDF:  $D(r)-4\pi r^2 \rho_0$  (red line), sum of model contributions (black line) and the difference between experimental and calculated functions (blue line). (Bottom) Reduced LAXS intensity functions s·i(s) (black line); model s·i<sub>calc</sub>(s) (red line).

## Appendix 4 – Alternatively interpreted DDIR peaks at 2564 and 2474 cm<sup>-1</sup>

In the main article it was suggested that the subpeaks at 2564 and 2474 cm<sup>-1</sup> were merely a result of an asymmetry in a peak located at 2533 cm<sup>-1</sup> or with a weighted center at 2513 cm<sup>-1</sup>. If, however, there is physical significance to these sub-peaks, the following more speculative explanation is offered:

It could be argued that O-D oscillators in molecules interacting with the D-end of HDO molecules should show a different behavior than O-D oscillators in HDO molecules interacting with the H-end. The Lindgren group, developers of double difference IR, proposed that only HDO molecules interacting with the D-end were spectroscopically distinguishable.<sup>94</sup> However, later research has shown that the relationship between the affected number and the hydration number is less straightforward than previously thought,<sup>95</sup> and therefore we lack knowledge about the difference in the spectroscopical behavior of D-donating and H-donating HDO molecules. Assuming that the two subpeaks of the hydroxyl oxygen depend on whether the D-end or H-end of HDO is the one accepting electron density from the hydroxyl oxygen atom, we can discuss which interaction are responsible for each sub peak. These two interactions are located rather close to each other which are in line with the fact that there is no severe separation within the anionic parts of spectra from previous investigations.<sup>94-110</sup> If the peak locations of these two spectra is compared to the peak location of bulk water at 2509 cm<sup>-1</sup>, the following hypothesis could be set: As the O-D oscillator engaged in a TeO(H)-HOD interaction (No 1 in Figure S3) is further from the central atom than an O-D oscillator engaged in a TeO(H)-DOH interaction (No 2 in Figure S3), it should have properties more similar to bulk water. As the peak of 2474 cm<sup>-1</sup> is the one closest to bulk water O-D stretching frequency, this peak is assigned to O-D oscillators engaged in TeO(H)-HOD interactions. By exclusion, the peak at 2564 cm<sup>-1</sup> is assigned to O-D oscillators engaged in TeO(H)-DOH interactions. It can be seen in figure S3 that this assignment is also compatible with a possible alternating pattern of increased(+) and decreased(-) bond energy for covalent and electrostatic interactions, measured as dislocation of affected spectrum peaks. This reasoning is in line with the suggested preference of hydration at the hydrogen side of acidic hydroxyl groups, as discussed in the main article.



**Figure S7:** Possible occurrence of HDO in the hydration shell of telluric acid. An O-D oscillator can be described to have either higher (+) or lower (-) energy compared to one in bulk solvent and this is measured by the position of its affected spectrum peak relative to the affected spectrum of bulk solvent. If the energy of one covalent or electrostatic interaction is changed, the energy of a neighboring interaction should change in the opposite direction. Oscillator suffixes 1, 2 and 3 are referred to in the text.

**Table S9:** The affected spectrum of  $Te(OH)_6(aq)$ , assuming that the alternative interpretation mention above is correct. Peaks for which a weighted average is given are Gaussian combinations of below standing italic marked peaks. Other peaks have Gaussian shape.

|                     | Center | Weighted | Assignment        |
|---------------------|--------|----------|-------------------|
|                     | cm     | cm       |                   |
| Te(OH) <sub>6</sub> | 2511   | 2449     | Affected spect.   |
| (N=9.7)             | 2533   | 2513     | TeO-bonded HDO    |
|                     | 2564   |          | TeO(H)-DOH        |
|                     | 2474   |          | TeO(H)-HOD        |
|                     | 2340   |          | Mainly Te(O)H-OHD |



Appendix 5 - Affected spectrum for arsenous acid, As(OH)<sub>3</sub>

**Figure S8:** Affected spectrum of  $As(OH)_3(aq)$  for N=6. The spectrum is modeled from two contributions of Gaussian character. The peak at 2331 cm<sup>-1</sup> (orange) is considered to be due to interactions with the hydroxyl hydrogen, while the peak at 2511 is due to interactions with the hydroxyl oxygen. The noisy blue line is an alternative affected spectrum for N=6, shown for comparison. The position of bulk water at 2509 cm<sup>-1</sup> is shown as a grey dashed line.



Appendix 6 - Distances in homoleptic complexes As(OL)<sub>3</sub>

**Figure S9** A possible relationship between As-O bond length and O-As-O angle is indicated with a dashed line for a number of homoleptic complexes As(OL)<sub>3</sub>; trifluoroacetate,<sup>111</sup> acetate<sup>112</sup>,<sup>113</sup> and 2,2-dimethylpropionate.<sup>114</sup> Also compounds with space demanding phenyl substituted ligands (As(OSn(Ph)<sub>3</sub>)<sub>3</sub> and As(OSi(Ph)<sub>3</sub>)<sub>3</sub>).<sup>115</sup>,<sup>116</sup>

### References

- (1) Worzala, H. Acta Crystallogr., Sect. B 1968, B 24, 987–991.
- (2) Amri, M.; Zouari, N.; Mhiri, T.; Gravereau, P. J. Alloy. Compd. 2009, 477, 68–75.
- (3) Schildkamp, W.; Schafer, G.; Spilker, J. Z. Kristall. 1984, 168, 187–195.
- (4) Kek, S.; GrotepassDeuter, M.; Fischer, K.; Eichhorn, K. Z. Kristall. 1997, 212, 671–678.
- (5) Ratajczak, H.; Muller, A.; Bogge, H.; Baran, J.; Ilczyszyn, M. M. *Ferroelectrics* **1996**, *177*, 173–179.
- (6) Ruhlandtsenge, K.; Bacher, A.; Muller, U. Z.Naturforsch., Teil B 1992, 47, 1677–1680.
- (7) Lee, C.; Harrison, W. T. A. Acta Crystallogr., Sect. C 2007, 63, m308–m311.
- (8) Ratajczak, H.; Barycki, J.; Pietraszko, A.; Baran, J.; Debrus, S.; May, M.; Venturini, J. *J. Mol. Struct.* **2000**, *526*, 269–278.
- (9) Wilkinson, H.; Harrison, W. Acta Crystallogr., Sect. C 2005, 61, m253-m255.
- (10) Delain, C. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 1958, 247, 1451–1452.
- (11) Khan, A.; Baur, W. Acta Crystallogr. Sect. B-Struct. Sci. 1973, 29, 2721–2726.
- (12) Helmholz, L.; Levine, R. J. Am. Chem. Soc. 1942, 64, 354-358.
- (13) Ilyukhin, A. B.; Katser, S. B.; Levin, A. A. Zhurnal Neorg. Khimii 1995, 40, 1599–1600.
- (14) Ferrari, A.; Nardelli, M.; Cingli, M. Gazz. Chim. Ital. 1956, 86, 1174-1180.
- (15) Fukami, T. Phys. Status Solidi A-Appl. Res. 1990, 121, 383-390.
- (16) Ichikawa, M.; Amasaki, D.; Gustafsson, T.; Olovsson, I. J. Phys. Soc. Jpn. 2001, 70, 2327–2332.
- (17) Hay, W.; Nelmes, R. Ferroelectrics 1976, 14, 599-600.
- (18) Fukami, T. J. Phys. Soc. Jpn. 1989, 58, 3429-3430.
- (19) Kay, M. I. Ferroelectrics 1978, 19, 151-154.
- (20) Fanchon, E.; Vicat, J.; Qui, D.; Boudjada, A. Acta Crystallogr., Sect. C 1987, 43, 1022–1025.
- (21) Wilkinson, H.; Harrison, W. Acta Crystallogr., Sect. E 2005, 61, m2023-m2025.
- (22) Janczak, J.; Perpetuo, G. J. Acta Crystallogr., Sect. C 2008, 64, o330-o334.
- (23) Wilkinson, H. S.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2006, 62, m1397-m1399.
- (24) Lee, C.; Harrison, W. Acta Crystallogr., Sect. E 2003, 59, m959–m960.
- (25) Oueslati, A.; Ben Nasr, C. Anal. Sci. X 2006, 22, x177-x178.
- (26) Andrade, L.; Costa, M.; Paixao, J.; Moreira, J.; Almeida, A.; Chaves, M.; Klopperpieper, A. *Z. Krist.-New Cryst. Struct.* **1999**, *214*, 535–536.
- (27) Wilkinson, H.; Harrison, W. Acta Crystallogr., Sect. E 2005, 61, m1228-m1230.
- (28) Zalkin, A.; Eimerl, D.; Velsko, S. Acta Crystallogr., Sect. C 1989, 45, 812-813.
- (29) Tordjman, I.; Masse, R.; Guitel, J. Acta Crystallogr., Sect. C 1988, 44, 2057–2059.
- (30) Yu, W.-T.; Lu, M.-K. Jiegou Huaxue 1992, 11, 9-.
- (31) Waskowska, A.; Dacko, S.; Czapla, Z. Z. Naturforsch. Teil A 2003, 58, 722-726.
- (32) Debrus, S.; May, M.; Barycki, J.; Glowiak, T.; Barnes, A. J.; Ratajczak, H.; Xue, D. J. J. Mol. Struct. 2003, 661, 595–601.
- (33) Wilkinson, H.; Harrison, W. Acta Crystallogr., Sect. E 2004, 60, m1359-m1361.
- (34) Chtioui, A.; Guerfel, T.; Benhamada, L.; Jouini, A. J. Soc. Chim. Tunis 2003, 5, 171-.
- (35) Wilkinson, H. S.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2007, 63, m1610-m1612.
- (36) Fabry, J.; Krupkova, R.; Vanek, P.; Cisarova, I. *Acta Crystallogr., Sect. E* 2001, *57*, o349–o352.
- (37) Fabry, J.; Krupkova, R.; Cisarova, I. Acta Crystallogr., Sect. C 2001, 57, 403–405.
- (38) Wilkinson, H. S.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2007, 63, m900-m901.
- (39) Wilkinson, H. S.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2007, 63, m26-m28.
- (40) Todd, M. J.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2007, 63, m945–m947.
- (41) Tordjman, I.; Masse, R.; Guitel, J. Acta Crystallogr., Sect. C 1988, 44, 2055–2057.

- (42) Pecaut, J.; Lefur, Y.; Masse, R. Acta Crystallogr., Sect. B 1993, 49, 535–541.
- (43) Oueslati, A.; Rayes, A.; Ben Nasr, C.; Lefebvre, F. Mater. Res. Bull. 2005, 40, 1680–1689.
- (44) Fabry, J.; Kroupa, J.; Cisarova, I. Acta Crystallogr., Sect. C 2001, 57, 22–25.
- (45) Wilkinson, H.; Harrison, W. Acta Crystallogr., Sect. E 2005, 61, m1289-m1291.
- (46) Oueslati, A.; Ben Nasr, C. Anal. Sci. X 2006, 22, x1-x2.
- (47) Chtioui, A.; Benhamada, L.; Jouini, A. Mater. Res. Bull. 2006, 40, 2243-2255.
- (48) Abdellahi, M.; Jouini, T. Acta Cryst., Sect. C 1996, 52, 1198–1200.
- (49) FERRARIS, G.; Jones, D.; Zowden, J. Atti della Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche e Naturali **1974**, 108, 507–527.
- (50) Hay, W.; Nelmes, R. Journal of Physics C-Solid State Physics 1981, 14, 1043–1052.
- (51) Currie, M.; Speakman, J. *Journal of the Chemical Society a -Inorganic Physical Theoretical* **1969**, 1648–&.
- (52) Ferraris, G.; Jones, D.; Yerkess, J. Acta Crystallogr., Sect. B 1971, B 27, 354–359.
- (53) Ferraris, G.; Chiari, G. Acta Crystallogr., Sect. B 1970, B 26, 1574–1583.
- (54) Baur, W.; Khan, A. Acta Crystallogr., Sect. B 1970, B 26, 1584–1596.
- (55) Todd, M.; Harrison, W. Acta Crystallogr., Sect. E 2005, 61, m1459-m1461.
- (56) Lee, C.; Harrison, W. Acta Crystallogr., Sect. E 2003, 59, m739-m741.
- (57) Lee, C.; Harrison, W. Acta Crystallogr., Sect. E 2003, 59, m1151-m1153.
- (58) Todd, M.; Harrison, W. Acta Crystallogr., Sect. E 2005, 61, m2026–m2028.
- (59) Wilkinson, H. S.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2007, 63, m905–m907.
- (60) Todd, M. J.; Harrison, W. T. A. Acta Crystallogr., Sect. E 2005, 61, m1024-m1026.
- (61) Averbuchpouchot, M.; Durif, A. Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1987, 43, 1894–1896.
- (62) Hseu, T.; Lu, T. Acta Crystallogr., Sect. B 1977, 33, 3947–3949.
- (63) Dickens, B.; Brown, W. Acta Crystallogr., Sect. B 1972, B 28, 3056–3065.
- (64) Ferrari, A.; Cavalca, L.; Nardelli, M. Gazz. Chim. Ital. 1954, 84, 169-174.
- (65) Schneidersmann, C.; Hoppe, R. Z. Anorg. Allg. Chem. 1991, 605, 67–74.
- (66) Mathew, M. J. Chem. Crystallogr. 1998, 28, 741-746.
- (67) Emmerling, F.; Idilbi, M.; Rohr, C. Z.Naturforsch.(B) 2002, 57, 599-604.
- (68) Weil, M. Cryst. Res. Technol. 2008, 43, 1286-1291.
- (69) Rius, J.; Gali, S. Cryst. Struct. Commun. 1982, 11, 829-834.
- (70) Korp, J.; Bernal, I.; Avens, L.; Mills, J. J. Crystallogr. Spectr. Res. 1983, 13, 263–272.
- (71) Rheingold, A.; Kane, M.; Fountain, M. *Structure GORKAZ, Cambridge database, deposition CCDC 115079* **1999**.
- (72) Irmer, E.; Sheldrick, G.; Parmar, S.; Saluja, H. Acta Crystallogr., Sect. C 1988, 44, 2024–2025.
- (73) Shkolnikova, L.; Fundamenskii, V.; Poznyak, A. Kristallografiya 1992, 37, 684-691.
- (74) Terzis, A.; Ioannou, P. V. Chem. Phys. Lipids 2002, 117, 53-61.
- (75) Chatterjee, A.; Sen Gupta, S. P. Acta Crystallogr., Sect. B 1977, 33, 3593–3595.
- (76) Nuttall, R.; Hunter, W. Acta Crystallogr., Sect. C 1995, 51, 2342–2344.
- (77) Percino, M. J.; Chapela, V. M.; Zayas, T.; de Barbarin, C. R. J. Chem. Crystallogr. 2002, 32, 307–314.
- (78) Marx, M. B. L.; Nuber, B.; Keppler, B. K. *Phosphorus Sulfur Silicon Relat. Elem.* **1996**, *118*, 31–38.
- (79) Smith, M.; Zingaro, R.; Meyers, E. J. Organomet. Chem. 1971, 27, 341-&.
- (80) Zenki, M.; Shibahara, T.; Yamasaki, M.; Kushi, Y. Anal. Sci. 1990, 6, 153–154.
- (81) Herrera, A. M.; Garcia-Serrano, J.; Alvarado-Rodriguez, J. G.; Rivas-Silva, J. F.; Pal, U. Acta Crystallogr., Sect. E 2005, 61, M2752–M2754.
- (82) Percino, M. J.; Chapela, V. M.; Rodriguez-Barbarin, C.; Bernes, S. J. Mol. Struct. 2001, 562, 45–53.

- (83) Shimada, A. Bull. Chem. Soc. Jpn. 1962, 35, 1600–1603.
- (84) Shimada, A. Bull. Chem. Soc. Jpn. 1960, 33, 301–304.
- (85) Struchkov, Y. T. Russian Chemical Bulletin 1960, 9, 1829–1833.
- (86) van der Lee, A.; Richez, P.; Tapiero, C. J. Mol. Struct. 2005, 743, 223–228.
- (87) Leonard, G.; Hunter, W.; Berger, B.; Fairlamb, A. Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1995, 51, 1953–1955.
- (88) Goedken, V.; Brough, L.; Rees, W. J. Organomet. Chem. 1993, 449, 125-130.
- (89) Bel'skii, V. Kristallografiya(Russ.)(Crystallogr. Rep.) 1982, 27, 56.
- (90) Chan, E. J.; Edmonds, J. S.; Kazawa, K.; Skelton, B. W.; White, A. H. Chem. Lett. 2007, 36, 160–161.
- (91) SilaghiDumitrescu, L.; Gibbons, M. N.; SilaghiDumitrescu, I.; ZukermanSchpector, J.; Haiduc, I.; Sowerby, D. B. J. Organomet. Chem. **1996**, *517*, 101–106.
- (92) Gresley, N. M.; Griffith, W. P.; White, A. J. P.; Williams, D. J. J. Chem. Soc.-Dalton Trans. 1997, 89–92.
- (93) Trotter, J.; Zobel, T. Journal of the Chemical Society 1965, 4466-&.
- (94) Bergström, P.; Lindgren, J.; Kristiansson, O. J. Phys. Chem. 1991, 95, 8575-8580.
- (95) Stangret, J.; Gampe, T. J. Phys. Chem. A 2002, 106, 5393–5402.
- (96) Stangret, J. Spectr. Lett. 1988, 21, 369-381.
- (97) Stangret, J.; Gampe, T. J. Phys. Chem. B 1999, 103, 3778-3783.
- (98) Bergström, P.; Lindgren, J.; Sandström, M.; Zhou, Y. Inorg. Chem. 1992, 31, 150–152.
- (99) Bergström, P.; Lindgren, J.; Read, M.; Sandström, M. J. Phys. Chem. 1991, 95, 7650-7655.
- (100) Bergström, P.; Lindgren, J. Inorg. Chem. 1992, 31, 1529-1533.
- (101) Kristiansson, O.; Eriksson, A.; Lindgren, J. Acta Chem. Scand. Ser. A 1984, 38, 613-618.
- (102) Kristiansson, O.; Lindgren, J. J. Mol. Struct. 1988, 177, 537-541.
- (103) Kristiansson, O.; Lindgren, J.; Devillepin, J. J. Phys. Chem. 1988, 92, 2680-2685.
- (104) Kristiansson, O.; Lindgren, J. J. Phys. Chem. 1991, 95, 1488-1493.
- (105) Lindgren, J.; Kristiansson, O.; Paluszkiewicz, C. In *Interactions of Water in Ionic and Nonionic Hydrates*; Springer-Verlag: Berlin Heidelberg, 1987; pp. 43–46.
- (106) Smiechowski, M.; Gojlo, E.; Stangret, J. J. Phys. Chem. B 2009, 113, 7650-7661.
- (107) Smiechowski, M.; Gojlo, E.; Stangret, J. J. Phys. Chem. B 2004, 108, 15938-15943.
- (108) Smiechowski, M.; Stangret, J. J. Phys. Chem. A 2007, 111, 2889–2897.
- (109) Stangret, J.; Kostrowicki, J. J. Solut. Chem. 1988, 17, 165-173.
- (110) Gojlo, E.; Smiechowski, M.; Panuszko, A.; Stangret, J. J. Phys. Chem. B 2009, 113, 8128-8136.
- (111) Rosmann, D.; Klinkhammer, K.; Schmidt, A. Monatsh. Chem. 1996, 127, 1215–1220.
- (112) Marsh, R. E. Acta Cryst. B 1997, 53, 317-322.
- (113) Kamenar, B.; Bruvo, M.; Butomovic, J. Z. Anorg. Allg. Chem. 1993, 619, 943-946.
- (114) Rosmann, D.; Klinkhammer, K.; Schmidt, A. Monatsh. Chem. 1996, 127, 461-468.
- (115) Ferguson, G.; Pollock, J.; OLeary, B.; Spalding, T. Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1996, 52, 619–622.
- (116) Herntrich, T.; Merzweiler, K. Z. Anorg. Allg. Chem. 2008, 634, 2572-2574.