Electronic Supplementary Information

Employment of methyl 2-pyridyl ketone oxime in 3d/4fmetal chemistry: dinuclear nickel(II)/lanthanide(III) species and complexes containing the metals in separate ions⁺

Christina D. Polyzou,^{*a,b*} Helen Nikolaou,^{*a*} Constantina Papatriantafyllopoulou,^{*c*} Vassilis Psycharis,^{*d*} Aris Terzis,^{*d*} Catherine Raptopoulou,^{*d*} Albert Escuer^{*,*b*} and Spyros P. Perlepes^{*,*a,e*}

^a Department of Chemistry, University of Patras, 265 04 Patras, Greece.
Tel: +30 2610 996730; E-mail: perlepes@patreas.upatras.gr
^b Departament de Quimica Inorgànica and Institut de Nanociéncia i Nanotecnologia, Universitat de Barcelona(IN²UB), Av.Diagonal 645, 08028 Barcelona, Spain. Tel: +34 93 4039138; Email:albert.escuer@qi.ub.es

 ^c Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
 ^d Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, Department of Materials Science, NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Greece
 ^e Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas (FORTH/ICE-HT), Platani, P.O. Box 1414, 265 04 Patras, Greece

Fig. S1 Plot of the second crystallographically independent, heterometallic cation that is present in 1.2MeOH0.6H₂O; the first one is shown in Fig. 1. Only the two metal ions are labelled. Colour scheme: Ni, dark red; Ce, yellow; O, red; N, blue; C, black; H, gray.

Fig. S2 Plot of the second crystallographically independent, heterometallic cation that is present in 8.1.2MeOH0.6H₂O; the first one is shown in Fig. 3. Only the two metal ions are labelled. Colour scheme: Ni, dark red; Dy, pink; O, red; N, blue; C, black; H, gray.

Fig. S3 The tricapped trigonal prismatic coordination spheres of Dy1(left) and Dy2 (right) in the structure of $8^{\circ}1.2$ MeOH $^{\circ}0.6$ H₂O. The very small spheres define the vertices of the ideal polyhedron. Colour scheme: Dy, pink; O, red; N, blue.

Fig. S4 The IR spectrum (KBr, cm^{-1}) of complex [NiCe(mpko)₃(mpkoH)₃](ClO₄)₂ (**1**).

Fig. S5 Reduced magnetization *vs*. magnetic field plots for complexes 2 (squares), 6 (circles), 7 (triangles) and 8 (diamonds) at 2 K. Solid lines are guides to the eye.

polyhedron according to the continuous shape measures				
Polyhedron ^c	Ce1	Ce2	Dy1	Dy2
EP-9 OPY-9 HBPY-9 JTC-9 JCCU-9 CCU-9 JCSAPR-9 JCSAPR-9 JTCTPR-9 TCTPR-9 JTDIC-9 HH 0	31.25 24.21 17.52 12.64 9.57 8.43 2.86 2.12 2.07 2.02 11.28 11.61	32.13 24.29 17.51 13.09 9.55 8.39 2.63 1.75 2.11 1.79 11.22	31.95 23.78 18.13 12.82 9.83 8.75 2.65 1.78 1.72 1.65 12.03 11.68	32.62 24.13 18.39 13.36 9.99 8.88 2.36 1.48 1.76 1.46 11.93 11.93
MFF-9	2.61	2.27	2.31	2.10

Table S1 Shape measures of the 9-coordinate $Ce1^a$, $Ce2^a$, $Dy1^b$, and Dy^b coordination polyhedra in complexes **1**1.2MeOH0.6H₂O and **8**1.2MeOH0.6H₂O. The values in boldface indicate the closest polyhedron according to the continuous shape measures

^{*a*} See Fig. 2. ^{*b*} See Fig. S3. ^{*c*} Abbreviations: EP-9, enneagon; OPY-9, octagonal pyramid; HBPY-9, heptagonal bipyramid; JTC-9, Johnson triangular cupola; JCCU-9, capped cube-Johnson; CCU-9, spherical-relaxed capped cube; JCSAPR-9, capped square antiprism-Johnson; CSAPR-9, spherical capped square antiprism; JTCTPR-9, tricapped trigonal prism; TCTPR-9, spherical tricapped trigonal prism; JTDIC-9, tridiminished icosahedron; HH-9, hula-hoop; MFF-9, muffin.

Polyhedron ^b	La
DD 10	24.00
DP-12	34.89
HPY-12	30.72
DBPY-12	19.35
HPR-12	9.90
HARP-12	16.30
TT-12	10.97
COC-12	2.04
ACOC-12	6.38
IC-12	3.60
JSC-12	20.84
JEPBPY-12	9.89
JBAPPR-12	15.37
JSPMC-12	19.08

Table S2 Shape measures of the 12-coordinate La coordination polyhedron^a in complex **11**²MeOH. The value in boldface indicates the closest polyhedron according to the continuous shape measures

^{*a*} See Fig. 5. ^{*b*} Abbreviations: DP-12, dodecagon; HPY-12, Hendecagonal pyramid; DBPY-12, decagonal bipyramid; HPR-12, hexagonal prism; HAPR-12, hexagonal antiprism; TT-12, truncated tetrahedron; COC-12, cuboctahedron; ACOC-12, anticuboctahedron (triangular orthobicupola); IC-12, icosahedron; JSC-12, square cupola; JEPBY-12, elongated pentagonal bipyramid; JBAPPR-12, biaugmented pentagonal prism; JSPMC-12, sphenomegacorona.