Thiacalix[4]crown based optical chemosensor for Fe³⁺, Li⁺ and cysteine: A Fe³⁺/Li⁺ ions synchronized allosteric regulations

Manoj Kumar,* Naresh Kumar and Vandana Bhalla

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar, Punjab, India. Fax: +91 (0)183 2258820; Tel: +91 (0)183 2258802 ext. 3205; E-mail: <u>mksharmaa@yahoo.co.in</u>

- S2 UV-vis spectra of **2** in the presence of different metal ions
- S3 Calculations for detection limit
- S4 Competitive fluorescence response of 2-Fe³⁺ complex
- S5 ¹H NMR Spectrum of **2**
- S6 ¹H NMR Spectrum of **2** (Expanded)
- S7 ¹³C NMR Spectrum of **2**
- S8 Mass Spectrum of 2

Figure S1. UV-vis spectra of **2** (1.0 μ M) in the presence of various metal ions (16 equiv each) in THF:H₂O; (9:1, v/v) buffered with HEPES, pH = 7.0.

Calculations for detection limit:

Figure S2. Figure showing the fluorescence intensity at 356 nm as a function of Fe^{3+} ions concentration.

To determine the detection limit, fluorescence titration of compound **2** with ferric ions was carried out by adding aliquots of ferric solution of minimum concentration and the fluorescence intensity as a function of Fe^{3+} ions added was then plotted. From this graph the equivalents used at which there was a sharp change in the fluorescence intensity multiplied with the concentration of receptor **2** gave the detection limit.

Equation used for calculating detection limit (DL):

$$DL = C_L \times E_T$$

 C_L = Conc. of Ligand; E_T = Equiv. of Titrant at which change observed.

Thus;

DL = $5 \times 10^{-6} \times 0.006 = 0.03 \times 10^{-6} = 3 \times 10^{-8}$ or = $30 \times 10^{-9} = 30$ nanomolar

Similar procedure was utilized for calculating the detection limits of Li⁺ and cysteine.

Figure S3. Fluorescence response of **2** (5.0 μ M) with Fe³⁺ ions (20 equiv) in THF:H₂O; (9:1, v/v) buffered with HEPES, pH = 7.0; λ_{ex} = 300 nm in the presence of other metal ions (20 equiv each). Bars represent selectivity (I₀/I); I₀ and I denote the fluorescence intensity at 356 nm before and after the addition of metal ions, respectively.

¹H NMR spectrum of **2** (Full Scale)

¹H NMR spectrum of **2**

¹³C NMR spectrum of **2**.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Mass spectrum of 2.

S8