## Novel Metal(II) Coordination Polymers Based on N,N'-bis-(4-pyridyl)phthalamide as Supercapacitor Electrode Materials in Aqueous Electrolyte

Yun Gong, Jian Li, Peng-Gang Jiang, Qing-Fang Li and Jian-Hua Lin\*

Department of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China. Fax (Tel.): +86-023-65102316 E-mail: jhlin@cqu.edu.cn or jhlin@pku.edu.cn

| Complex 1           |           |                      |            |
|---------------------|-----------|----------------------|------------|
| Zn(6)-O(19)         | 1.913(6)  | Zn(5)-O(25)          | 1.912(7)   |
| Zn(3)-O(17)         | 1.951(6)  | Zn(2)-O(6)           | 2.036(6)   |
| Zn(4)-O(22)         | 2.439(7)  | Zn(2)-O(5)           | 2.394(6)   |
| Zn(5)-N(12)#1       | 1.976(8)  | Zn(4)-N(8)#1         | 2.075(8)   |
| O(6)-Zn(2)-O(5)     | 58.7(2)   | O(9)-Zn(2)-O(5)      | 162.9(2)   |
| O(10)-Zn(1)-O(3)    | 106.4(3)  | N(4)#2-Zn(2)-O(5)    | 92.4(3)    |
| O(24)-Zn(5)-N(12)#1 | 115.1(3)  | O(3)-Zn(1)-N(1)      | 100.4(3)   |
| Complex 2           |           |                      |            |
| Cd(1)-N(4)#3        | 2.288(4)  | Cd(1)-N(1)           | 2.331(4)   |
| Cd(1)-O(11)#4       | 2.424(4)  | Cd(1)-O(10)          | 2.327(4)   |
| Cd(2)-N(8)#3        | 2.303(5)  | Cd(2)-N(5)           | 2.309(4)   |
| Cd(2)-O(7)          | 2.319(4)  | Cd(2)-O(5)#5         | 2.434(4)   |
| N(5)-Cd(2)-O(10)    | 83.90(14) | N(4)#3-Cd(1)-O(12)#4 | 96.47(15)  |
| N(5)-Cd(2)-O(9)     | 88.85(14) | O(7)-Cd(2)-O(9)      | 130.75(14) |
|                     |           |                      |            |

Table S1 Selected bond lengths (Å) and angles (°) for complexes 1-2

| O(8)-Cd(1)-C                                                | D(7) 50.   | 68(12)     | O(11)#4-Cd(1)-O   | (7) 166.94(13)    |  |
|-------------------------------------------------------------|------------|------------|-------------------|-------------------|--|
| N(4)#3-Cd(1)                                                | )-N(1) 17. | 3.89(16)   | N(8)#3-Cd(2)-N(   | 5) 175.40(17)     |  |
| Symmetry transformations used to generate equivalent atoms: |            |            |                   |                   |  |
| #1 x+1,y,z                                                  | #2 x-1,y,z | #3 x-1,y,z | #4 x,-y+3/2,z-1/2 | #5 x,-y+1/2,z+1/2 |  |

Table S2 The dihedral angles (°) of the two phenyl rings of BPC<sup>2-</sup> in complex 1

| Plane 1   | Plane 2   | Dihedral angle |
|-----------|-----------|----------------|
| C20-C25   | C20A-C25A | 0              |
| C41-C46   | C41B-C46B | 0              |
| C108-C113 | C114-C119 | 2              |
| C66-C71   | C72-C77   | 25.6           |
| C86-C91   | C80-C85   | 35.7           |
| C100-C105 | C94-C99   | 30.5           |
| C27-C32   | C33-C38   | 9              |

Symmetry transformations used to generate equivalent atoms:

A -x, -y+2, -z+1; B -x, -y+2, -z

The specific capacitance (SC), specific power density (SP) and specific energy (SE) based on the active materials were estimated from the discharge process using **Equations 1-3** as follows: <sup>1</sup>

SC 
$$(\mathbf{F} \cdot \mathbf{g}^{-1}) = \frac{I \times \Delta t}{\Delta E \times m}$$
 (1)

SP 
$$(W \cdot kg^{-1}) = \frac{I \times \Delta E}{m}$$
 (2)

SE (W·h·Kg<sup>-1</sup>) = 
$$\frac{I \times t \times \Delta E}{m}$$
 (3)

where *I*,  $\triangle t$ ,  $\triangle E$  and *m* represent the current density, discharge time, potential range and the active mass of the material, respectively.

The energy deliverable efficiency ( $\eta$ /%) was obtained from Equation 4. <sup>2</sup>

$$\eta(\%) = \frac{t_{\rm d}}{t_{\rm c}} \times 100 \tag{4}$$

where  $t_d$  and  $t_c$  are discharge time and charging time, respectively.

 Table S3 Supercapacitive properties of 1-GCE, 2-GCE and the bare GCE determined

 using the galvanostatic discharge method at different current densities.

| Current                        | Potential   |           | Supercapacitive parameters |                             |                            |                              |     |
|--------------------------------|-------------|-----------|----------------------------|-----------------------------|----------------------------|------------------------------|-----|
| Density/<br>mA·g <sup>-1</sup> | Range/<br>V | Electrode | SC/<br>F·g <sup>-1</sup>   | SC/<br>mF· cm <sup>-2</sup> | SP/<br>W∙ kg <sup>-1</sup> | SE/<br>W·h ·kg <sup>-1</sup> | η   |
|                                | 0~1.2       | 1-GCE     | 23                         | 93                          | 3                          | 1.9                          | 55% |
| 2.5                            | 0~1.3       | 2-GCE     | 22                         | 88                          | 3.3                        | 2.1                          | 91% |
|                                | 0~0.6       | Bare GCE  | 0.6                        | 2.3                         | 1.5                        | 0.01                         | 16% |
| 6.25                           | 0~2.0       | 1-GCE     | 5.2                        | 21                          | 12.5                       | 1.2                          | 40% |
|                                | 0~1.7       | 2-GCE     | 8.6                        | 36                          | 10.6                       | 1.4                          | 95% |
|                                | 0~1.2       | Bare GCE  | 0.5                        | 2.0                         | 7.5                        | 0.04                         | 23% |
| 18.25                          | 0~2.6       | 1-GCE     | 1.4                        | 5.8                         | 48.8                       | 0.5                          | 95% |
|                                | 0~2.6       | 2-GCE     | 1.3                        | 5.0                         | 48.8                       | 0.5                          | 91% |
|                                | 0~1.2       | Bare GCE  | 0.3                        | 1.3                         | 22.5                       | 0.03                         | 80% |



**Fig.S1** Space-filling diagram of the 3D host framework in complex 1 (uncoordinated DMF molecules omitted for clarity)



Fig.S2 The PXRD patterns of complexes 1 (a) and 2 (b).



**Fig.S3** Cyclic voltammograms (CVs) of the bare **GCE** in 1M  $Li_2SO_4$  aqueous solution at a sweep rate of 100 (purple), 50(red) and 20 mV·s<sup>-1</sup>(blue), respectively.



**Fig. S4.** Typical charge-discharge cycles obtained at **1-GCE** (red) and **bare-GCE** (blue) at 6.25 mA $\cdot$ g<sup>-1</sup>. Supporting electrolyte = 1M Li<sub>2</sub>SO<sub>4</sub>.



**Fig.S5** Typical charge-discharge cycles obtained at **1-GCE** (red) and **bare-GCE** (blue) at 2.5 mA $\cdot$ g<sup>-1</sup>. Supporting electrolyte = 1M Li<sub>2</sub>SO<sub>4</sub>.



Fig. S6 Space-filling diagram of the 3D host framework in complex 2 (uncoordinated solvent molecules omitted for clarity)



**Fig.S7** CVs of the bare **GCE** (pink), **L-GCE** (blue), **H<sub>2</sub>TDC-GCE** (purple) and **2-GCE** (red) in 1M Li<sub>2</sub>SO<sub>4</sub> aqueous solution at a sweep rate of 50 mV·s<sup>-1</sup>.



**Fig.S8** Typical charge-discharge cycles obtained at **2-GCE** at 6.25 (red) and 2.5  $mA \cdot g^{-1}$  (blue). Supporting electrolyte = 1M Li<sub>2</sub>SO<sub>4</sub>.



Fig. S9 N<sub>2</sub> adsorption and desorption isotherm at 77 K for evacuated complex 1.



Fig. S10 UV absorption spectra at room temperature for the free ligands and complexes

**1-2**.



**Fig. S11** Solid-state emission spectra at room temperature for the free organic ligands and complexes **1-2**.

## **References:**

- (a) K. R. Prasad and N. Munichandraiah, *Electrochem. Solid-State Lett.*, 2002, *5*, A271;
   (b) V. Gupta, T. Shinomiya, N. Miurain: *Recent Advances in Supercapacitors*, ed. V. Gupta, Transworld Research Network, Kerala, India, 2006, (ch. 2), 17; (c) V. Ganesh, S. Pitchumani and V. Lakshminarayanan, *J. Power Sources*, 2006, *158*, 1523; (d) T. Shinomiya, V. Gupta and N. Miura, *Electrochim. Acta*, 2006, *51*, 4412.
- 2 S. G. Kandalkar, J. l. Gunjakar and C. D. Lokhande, Appl. Surf. Sci., 2008, 254, 5540.