Supplementary Information for

High-contrast fluorescence sensing of aqueous Cu(I) with triarylpyrazoline probes: Dissecting the roles of ligand donor strength and excited state proton transfer

M. Thomas Morgan, Pritha Bagchi, and Christoph J. Fahrni*

School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332

Table of Contents

1. ¹ H-NMR and ¹³ C-NMR Spectra	S2-10
2. Time-resolved Fluorescence Decay Profiles	S11-13
3. Electrochemistry	S14
4. Determination of the Apparent Cu(I)-Affinity of Probe 1	S15
5. Determination of the Acid Dissociation Constant of Probe 1	S17

¹H-NMR (CDCl₃, 400 MHz)

¹H-NMR (CDCl₃, 400 MHz)

Note: the quartet near 3.8 ppm is due to residual 2,2,2-trifluoroethanol used as solvent in the preparation of 11.

2. Time-resolved Fluorescence Emission Decay Data

Figure S1a: Fluorescence decay profile for pyrazoline derivative **1** in aqueous buffer (10 mM MOPS/K⁺, pH 7.2) at 22 °C (IRF = instrument response function; curve fit for a biexponential decay shown as solid trace in red).

Figure S1b: Fluorescence decay profile for pyrazoline derivative 1 in D₂O buffer (10 mM MOPS/K⁺, pH* 7.3 in D₂O corresponding to pH 7.2 in H₂O) at 22 °C (IRF = instrument response function; curve fit for a biexponential decay shown as solid trace in red).

Figure S2: Fluorescence decay profile for pyrazoline derivative CTAP-2 in aqueous buffer (10 mM MOPS/K⁺, pH 7.2) at 22 °C (IRF = instrument response function; curve fit for a biexponential decay shown as solid trace in red).

Figure S3a: Fluorescence decay profile for pyrazoline derivative **11** in water at 22 $^{\circ}$ C (IRF = instrument response function; curve fit for a monoexponential decay shown as solid trace in red).

Figure S3b: Fluorescence decay profile for pyrazoline derivative **11** in D_2O at 22 °C (IRF = instrument response function; curve fit for a monoexponential decay shown as solid trace in red).

Figure S3c: Fluorescence decay profile for pyrazoline derivative **11** in MeOH at 22 °C (IRF = instrument response function; curve fit for a monoexponential decay shown as solid trace in red).

3. Electrochemistry

Figure S4: Cyclic voltammogram of **1** (70 μ M) in the presence of 30 μ M [Cu(I)(CH₃CN)₄]PF₆ at pH 5.0 under deoxygenated condition (10 mM PIPBS, 0.1 M KClO₄, glassy carbon working electrode, Pt counter electrode, aqueous Ag/AgCl/1 M KCl reference electrode, scan rate 50 mV/s, direction indicated by black arrows). The voltammogram was referenced against the external Fc^{+/0} potential measured under the same conditions.

4. Determination of the Apparent Cu(I)-Affinity of Probe 1

Figure S5: Fluorescence titration of pyrazoline 1 (5µM) with CH₃CN in the presence of 3.6 µM CuSO₄ and 50 µM sodium ascorbate under deoxygenated condition in PIPBS buffer (50 mM, pH 5.0, 60 mM KClO₄, 22°C). A) Fluorescence spectra acquired for c(CH₃CN) ranging between 0 to 1.60 M. The red trace corresponds to the emission spectrum prior to addition of CH₃CN. B) Fluorescence intensity change (red points) and curve fit (solid trace) for the titration (A) at a wavelength of 508 nm (log $K^{Cu(I)} = 9.71 \pm 0.02$).

Figure S6: Fluorescence titration of pyrazoline **1** (5 μ M) with CuSO₄ in the presence of 100 μ M sodium ascorbate and constant CH₃CN concentration of 0.70 M under deoxygenated condition in PIPBS buffer (50 mM, pH 5.0, 60 mM KClO₄, 22°C). A) Fluorescence spectra acquired for c(Cu(II)) ranging between 0.56 to 8.56 μ M. B) Fluorescence intensity change (red points) and curve fit (solid trace) for the titration (A) at a wavelength of 508 nm (log $K^{Cu(I)} = 9.74 \pm 0.03$).

5. Determination of the Acid Dissociation Constant of Probe 1

Figure S7: Titration of pyrazoline **1** with HCl at constant 0.1 M ionic strength. A) UV-vis spectra acquired for c(HCl) ranging between 1 mM to 100 mM. The red trace corresponds to the UV-vis absorption spectrum at $-\log[H_3O]^+ = 3.0$. B) Absorbance change (red points) and curve fit (solid trace) for the titration (A) at a wavelength of 419 nm (p $K_a = 1.0\pm0.05$).