Electronic Supplementary Information

Fluorescent azadipyrrinato zinc(II) complex:
Hybridisation with a dipyrrinato ligand

Ryota Sakamoto, ${ }^{a}$ Shinpei Kusaka, ${ }^{a}$ Yasutaka Kitagawa, ${ }^{b}$ Masa-aki Kishida, ${ }^{a}$ Mikihiro Hayashi, ${ }^{a}$ Yusuke Takara, ${ }^{a}$ Mizuho Tsuchiya, ${ }^{a}$ Junko Kakinuma, ${ }^{a}$ Takuma Takeda, ${ }^{a}$ Keisuke Hirata, ${ }^{a}$ Tomoya Ogino, ${ }^{a}$ Keisuke Kawahara, ${ }^{a}$ Toshiki Yagi, ${ }^{a}$ Shu Ikehira, ${ }^{a}$ Tomoya Nakamura, ${ }^{a}$ Mayuko Isomura, ${ }^{a}$ Mikoto Toyama, ${ }^{a}$ Saki Ichikawa, ${ }^{a}$ Mitsutaka Okumura ${ }^{b}$ and Hiroshi Nishihara** ${ }^{a}$
${ }^{a}$ Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
${ }^{b}$ Department of Chemistry, Graduate School of Science, Osaka University, 1-1,Machikaneyama, Toyonaka, Osaka 056-0043, Japan.

1. General

All commercially available chemicals were purchased and used without further purification. Dipyrrin $\mathbf{2}^{1}$, and $1,3-\operatorname{di}\left(4\right.$ '-methoxy)phenyl-2-propene-1-one $\mathbf{3}^{2}$ were synthesised according to the literature. Preparative gel permeation liquid chromatography (GPC) was performed by LC-918 with a JAIGEL 1H column (Japan Analytical Industry) using chloroform as solvent. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(126 \mathrm{MHz})$ NMR spectra were recorded on a Bruker-DRX500 spectrometer using residual CDCl_{3} ($\delta_{\mathrm{H}} 7.25, \delta_{\mathrm{C}} 77.00$) as an internal standard. UV-vis spectra were recorded on a JASCO V-570 spectrometer. Fluorescence spectra were recorded on a HITACHI F-4500 fluorometer. Absolute quantum yields were measured by a HAMAMATSU C9920-01. For the measurement of absolute quantum yields, the excitation wavelengths were the absorption maxima and the concentrations were adjusted so that the largest absorbances were ~ 0.05 for each compound. High resolution mass spectroscopy (HRMS) was performed on a JEOL JMS-700MStation mass spectrometer using PEG600 as a matrix. X-ray diffraction data were collected at 113 K on a Rigaku Saturn CCD system with a graphite-monochromated MoK_{α} radiation $(\lambda=0.7107 \AA$) using Crystal Clear (Rigaku). The structure was solved by the direct method and refined by full-matrix least-squares using SHELXS-97. ${ }^{3}$ DFT calculations were performed on Gaussian 09^{4}.

2. Material preparation

2.1 4-Nitro-1,3-di(4'-methoxy)phenyl-1-butanone (4)

This compound was synthesised according to the literature from 3. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~m}$, $2 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=195.42$ (s), 163.75 (s), 158.97 (s), $131.09(\mathrm{~s})$, 130.30 (s , 129.43 (s), 128.45 (s$), 114.32$ (s$), 113.81$ (s$), 79.85$ (s$), 55.46$ (s$), 55.18$ (s$)$, 41.22 (s), 28.71 (s).

2.2 Azadipyrrin $\mathbf{1}^{6}$

An EtOH (40 mL) solution of 4-Nitro-1,3-di(4'-methoxy)phenyl-1-butanone (4) (0.61 g , 1.86 mmol) and ammonium acetate ($5.0 \mathrm{~g}, 65 \mathrm{mmol}$) was refluxed 24 h . While heating, the reaction solution turned into a blue suspension. After the reaction mixture was cooled to room temperature, precipitate was filtered, washed with EtOH and water, and dried in vacuo, to give azadipyrrin $\mathbf{1}(0.25 \mathrm{~g}, 47 \%)$ as a dark green solid.
HRMS(FAB +) $[\mathrm{M}+]$ calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z} 569.2315$; found: m/z 569.2310 .; ${ }^{1} \mathrm{H}$
NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H})$, peak
derived from pyrrolic proton could not be observed due to broadening;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.12$ (s), 159.53 (s), 154.10 (s), $149.20(\mathrm{~s})$, 141.78 (s), 130.31 (s), 128.04 (s$), 126.88$ (s), 125.20 (s), 114.59 (s), 113.69 (s$), 112.96$ (s), 55.49 (s), 55.35 (s$).$

2.2 Heteroleptic complex $\mathbf{1 - Z n - 2}$

To a $\mathrm{MeOH}(10 \mathrm{~mL})$ solution of $\mathrm{Zn}(\mathrm{OAc})_{2}(9.4 \mathrm{mg}, 0.051 \mathrm{mmol}), \mathrm{CHCl}_{3}(10 \mathrm{~mL})$ solution of azadipyrrin $\mathbf{1}(29.1 \mathrm{mg}, 0.051 \mathrm{mmol})$ and dipyrrin $2(8.8 \mathrm{mg}, 0.051 \mathrm{mmol})$ were added and stirred 1 h at room temperature. After removal of the solvent, the residue was purified by GPC followed by recrystallisation from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give complex 1-Zn-2 ($3.9 \mathrm{mg}, 9.5 \%$) as a gold metallic solid.
HRMS(FAB+) $[\mathrm{M}+]$ calcd for $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Zn}$: $\mathrm{m} / \mathrm{z} 803.2450$; found: $\mathrm{m} / \mathrm{z} 803.2457$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.03$ (s, 2H), $6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 4 \mathrm{H}), 6.01(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=160.39$ (s), 160.22 (s$), 159.45$ (s), 158.88 (s), 147.37 (s), 144.73 (s), 138.02 (s), 132.30 (s), 131.10 (s), 128.86 (s), 128.58 (s), 127.35 (s), 126.52 (s), 117.14 (s), 115.83 (s), 113.56 (s), 113.47 (s), 55.33 ($s), 55.27$ (s), 16.53 (s).

2.3 Homoleptic complex $\mathbf{1 - Z n - 1}$

To a $\mathrm{MeOH}(20 \mathrm{~mL})$ solution of $\mathrm{Zn}(\mathrm{OAc})_{2}, \mathrm{a}_{2} \mathrm{Cl}_{2}$ solution of azadipyrrin 1 was added and stirred for 20 min . The reaction mixture was filtered through celite and evaporated. The residue was recrystallised from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 - Z n - 1}$ (14.5 mg) as a purple solid.
HRMS(FAB+) [M+] calcd for $\mathrm{C}_{72} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Zn}: \mathrm{m} / \mathrm{z}$ 1200.3764; found: $\mathrm{m} / \mathrm{z} 1200.3752$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 8 \mathrm{H}), 6.95$ (d, $J=8.7 \mathrm{~Hz}, 8 \mathrm{H}), 6.61(\mathrm{~s}, 4 \mathrm{H}), 6.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 8 \mathrm{H}), 3.90(\mathrm{~s}, 12 \mathrm{H}), 3.37(\mathrm{~s}, 12 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=160.42$ (s), 159.47 (s$), 159.25$ (s), $147.72(\mathrm{~s})$, 143.90 (s), 130.86 (s), 128.29 (s), 127.46 (s), 126.00 (s), 115.27 (s), 113.40 (s), 113.38 (s), 55.35 (s), 55.00 (s).

2.3 Homoleptic complex 2-Zn-2

This compound was synthesised by the same procedure as that for $\mathbf{1 - Z n - 1}$.
HRMS(FAB +) $[\mathrm{M}+]$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{Zn}$: m/z 406.1136; found: m/z 406.1134.; ${ }^{1} \mathrm{H}$
NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.01(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=4.0$
$\mathrm{Hz}, 2 \mathrm{H}$), $2.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.45(\mathrm{~s}), 138.35(\mathrm{~s})$, 132.26 (s), 129.67 (s), 117.15 (s), 16.41 (s).
3. X-ray crystallographic analysis
3.1 Heteroleptic complex $\mathbf{1 - Z n - 2}$

Fig. S1 (a) Thermal ellipsoid plot for 1-Zn-2 (50\% probability) (b) Dihedral angle around Zn atom.

Table S1. Selected bond lengths $\mathbf{1 - Z n - 2}$

Bond	Length (\AA)	Bond	Length (\AA)
Zn1 N1	$1.999(5)$	N3 C17	$1.33(1)$
Zn1 N2	$2.011(6)$	N1 C17	$1.41(1)$
Zn1 N4	$2.008(7)$	N2 C31	$1.38(1)$
Zn1 N5	$1.992(5)$	C31 C47	$1.39(1)$
N2 C3	$1.356(8)$	C32 C47	$1.38(1)$
N4 C36	$1.416(9)$	N5 C32	$1.40(1)$
N3 C36	$1.324(7)$		

Table S2. Selected bond angles for 1-Zn-2

angle	degree $\left(^{\circ}\right)$	angle	$\operatorname{degree}\left({ }^{\circ}\right)$
N1 Zn1 N4	$96.4(2)$	N4 Zn1 N5	$111.5(2)$
N1 Zn1 N2	$105.8(2)$	C17 N3 C36	$129.9(6)$
N2 Zn1 N5	$94.8(2)$	C31 C47 C32	$130 . .3(7)$

Table S3. Selected torsion angles around bonds for $\mathbf{1 - Z n - 2}$

torsion angle	degree $\left(^{\circ}\right)$	torsion angle	degree $\left(^{\circ}\right)$
C17 N3 C36 N4	$3(1)$	C45 C19 C33 N4	$14(\mathbf{1})$
C36 N3 C17 N1	$7(1)$	C36 C13 C24 C44	$23(\mathbf{1})$
N5 C32 C47 C31	$0(1)$	C25 C16 C23 C17	$30(\mathbf{1})$
N2 C31 C47 C32	$4(1)$	C41 C1 C12 C20	$16(\mathbf{1})$

Table S4. Crystallographic data for $\mathbf{1 - Z n - 2}$

chemical formula	$\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Zn}$
formula weight	805.25
crystal system	monoclinic
space group	$P 2_{1} / c$
$a(\AA)$	$25.194(8)$
$b(\AA)$	$7.483(3)$
$c(\AA)$	$22.121(8)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$112.754(4)$
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	$3846(2)$
Z	4
$D c\left(\mathrm{~g} \mathrm{~cm}{ }^{-3}\right)$	1.391
$F(000)$	1680.00
reflections/parameters/constraints	$6945 / 514 / 0$
goodness of fit	1.083
μ	0.692
$R 1[I>2 \sigma(I)]$	0.0881
$w R 2[$ all data $]$	0.2336

3.2 Homoleptic complex $\mathbf{1 - Z n - 1}$

Fig. S2 Thermal ellipsoid plot for $\mathbf{1 - Z n} \mathbf{- 1}$ (50% probability).

Table S5. Selected bond lengths for $\mathbf{1 - Z n} \mathbf{- 1}$

bond	length (\AA)	bond	length (\AA)
Zn1 N2	$1.991(2)$	N1 C59	$1.322(3)$
Zn1 N6	$1.994(2)$	N1 C44	$1.327(4)$
N2 C59	$1.400(3)$	N6 C44	$1.398(3)$

Table S6. Selected bond angles for $\mathbf{1 - Z n} \mathbf{- 1}$

angle	degree $\left({ }^{\circ}\right)$	angle	degree $\left({ }^{\circ}\right)$
N2 Zn1 N6	$95.06(9)$	C44 N1 C59	$127.6(2)$
N2 Zn1 N5	$109.92(9)$		

Table S7. Selected torsion angles around bonds for $\mathbf{1 - Z n - 1}$

torsion angle	degree $\left({ }^{\circ}\right)$	torsion angle	degree $\left({ }^{\circ}\right)$
C44 N1 C59 N2	$7.4(5)$	C20 C40 C54 C44	$33.2(5)$
C59 N1 C44 N6	$9.8(5)$	C47 C19 C43 N2	$22.2(5)$
C59 C32 C62 C58	$-13.6(5)$	N6 C15 C18 C67	$19.3(5)$

Table S8. Crystallographic data for $\mathbf{1 - Z n - 1}$

chemical formula	$\mathrm{C}_{72} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Zn}$
formula weight	1202.68
crystal system	monoclinic
space group	$P 2_{1} / n$
$a(\AA)$	$21.652(3)$
$b(\AA)$	$11.8115(16)$
$c(\AA)$	$22.608(3)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$93.7316(15)$
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	$5769.6(14)$
Z	4
$D c(\mathrm{~g} \mathrm{~cm}$	
$F(000)$	1.384
reflections/parameters/constraints	2512.00
goodness of fit	$13099 / 784 / 0$
μ	1.069
$R 1[I>2 \sigma(I)]$	0.492
$w R 2[$ all data $]$	0.0566

4. Optimised structures by DFT calculation

4-1. Heteroleptic complex 1-Zn-2

Fig. S3 Optimised structure of 1-Zn-2 (B97D/6-31G(d)).

Fig. S4 Optimised structure of 1-Zn-2 (B3LYP/6-31G(d)).

4-2. Homolpetic complex 1-Zn-1

Fig. S5 Optimised structure of 1-Zn-1 (B97D/6-31G(d)).

Fig. S6 Optimised structure of $\mathbf{1 - Z n - 1}$ (B3LYP/6-31G(d)).

References

1. L. Wu, K. Burgess, Chem. Commun., 2008, 4933.
2. Y. Qian, G. Y. Ma, Y. Yang, K. Cheng, Q. Z. Zheng, W. -J. Mao, L. Shi, J. Zhao, H. L. Zhu, Bioorg. Med. Chem., 2010, 18, 4310.
3. G. M. Sheldrick, SHELX-97 Programs for Crystal Structure Analysis (Release 97-2);

University of Göttingen, Germany, 1997.
4. Gaussian 09, Revision B.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
5. W. Davey, D. J. Tivey, J. Chem. Soc., 1958, 2276.
6. S. O. McDonnell, D. F. O'Shea, Org. Lett., 2006, 8, 3493.

