Electronic Supplementary Information (ESI[†])

for

Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III) complex formation

Akhtar Hussain,^{*a*} Kumar Somyajit,^{*b*} Bhabatosh Banik,^{*a*} Samya Banerjee,^{*a*} Ganesh Nagaraju^{**b*} and Akhil R. Chakravarty^{**a*}

^a Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India. E-mail: <u>arc@ipc.iisc.ernet.in;</u> Tel: +91-80-22932533

^b Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India. E-mail: <u>nganesh@biochem.iisc.ernet.in</u>; Tel: +91-80-22933055

Fig. S1 Generalized synthetic scheme for (a) the lanthanide(III) complexes **1-8** and (b) the ligands used in the present study.

Fig. S2 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[La(ph-tpy)(cur)(NO_3)_2]$ (1) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Fig. S3 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[La(py-tpy)(cur)(NO_3)_2]$ (2) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Fig. S4 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[La(ph-tpy)(scur)(NO_3)_2]$ (3) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Fig. S5 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[La(py-tpy)(scur)(NO_3)_2]$ (4) in 10% aqueous MeOH showing the prominent $[M-(NO_3)]^+$ peak.

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```


Fig. S6 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[Gd(ph-tpy)(cur)(NO_3)_2]$ (5) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Fig. S7 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[Gd(py-tpy)(cur)(NO_3)_2]$ (6) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Fig. S8 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[Gd(ph-tpy)(scur)(NO_3)_2]$ (7) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Fig. S9 (a) The ESI-MS spectrum and (b) the isotopic distribution pattern of $[La(py-tpy)(scur)(NO_3)_2]$ (8) in 10% aqueous MeOH showing the prominent $[M-(NO_3^-)]^+$ peak.

Fig. S10 IR spectrum of $[La(ph-tpy)(cur)(NO_3)_2]$ (1).

Fig. S11 IR spectrum of $[La(py-tpy)(cur)(NO_3)_2]$ (2).

Fig. S12 IR spectrum of [La(ph-tpy)(scur)(NO₃)₂] (3).

Fig. S13 IR spectrum of $[La(py-tpy)(scur)(NO_3)_2]$ (4).

Fig. S14 IR spectrum of $[Gd(ph-tpy)(cur)(NO_3)_2]$ (5).

Fig. S15 IR spectrum of $[Gd(py-tpy)(cur)(NO_3)_2]$ (6).

Fig. S16 IR spectrum of $[Gd(ph-tpy)(scur)(NO_3)_2]$ (7).

Fig. S17 IR spectrum of $[Gd(py-tpy)(scur)(NO_3)_2]$ (8).

Fig. S18 ¹H NMR spectrum of $[La(ph-tpy)(cur)(NO_3)_2]$ (1) in DMSO-*d*₆. The peaks marked S between 2-3.5 ppm are due to solvent.

Fig. S19 ¹H NMR spectrum of $[La(py-tpy)(cur)(NO_3)_2]$ (2) in DMSO-*d*₆. The peaks marked S between 2-3.5 ppm are due to solvent.

Fig. S20 ¹H-NMR spectrum of $[La(ph-tpy)(scur)(NO_3)_2]$ (3) in DMSO-*d*₆. The peaks marked S between 2-3.5 ppm are due to solvent.

Fig. S21 'H-NMR spectrum of $[La(py-tpy)(scur)(NO_3)_2]$ (4) in DMSO-*d*₆. The peaks marked S between 2-3.5 ppm are due to solvent.

Fig. S22 The electronic absorption spectra of the complexes (a) **1** and **2**, (b) **3** and **4** and (c) **5** and **6** (solid curves) in 10% aqueous DMF. Fluorescence emission spectra of the complexes (a) **1** and **2**; (b) **3** and **4** and (c) **5** and **6** in 5% aqueous DMSO (dotted curves). The excitation wavelength is 420 nm.

Fig. S23 Unit cell packing diagram of the complex $[La(ph-tpy)(cur)(NO_3)_2]$.H₂O (1.H₂O).

Fig. S24 Unit cell packing diagram of the complex [Gd(ph-tpy)(cur)(NO₃)₂].H₂O (5.H₂O).

Fig. 25 H- bonding (solid yellow lines) in the crystal lattice of $[La(ph-tpy)(cur)(NO_3)_2]$.H₂O (1.H₂O).

Fig. 26 H-bonding (solid yellow lines) in the crystal lattice of $[Gd(ph-tpy)(cur)(NO_3)_2]$.H₂O (5.H₂O).

Fig. S27 Absorption spectral traces of complex **8** in 5 mM Tris-HCl buffer (pH 7.2) on increasing the quantity of calf thymus DNA. The inset shows the least-squares fit of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA] for [Gd(ph-tpy)(cur)(NO₃)₂] (**1**, \blacktriangle), [Gd(py-tpy)(cur)(NO₃)₂] (**2**, \blacksquare), [Gd(ph-tpy)(scur)(NO₃)₂] (**3**, \blacktriangledown) and [Gd(py-tpy)(scur)(NO₃)₂] (**4**, \bullet).

Fig. S28 (a) Derivative plots dA_{260}/dT vs. *T* for thermal denaturation of 180 µM calf thymus (ct) DNA alone and after addition of the complexes 1–4. (b) Plots of $(\eta/\eta_0)^{1/3}$ vs. [compound]/[DNA] showing the effect of increasing concentration of the complexes [La(ph-tpy)(cur)(NO_3)_2] (1, \blacktriangleleft), [La(py-tpy)(cur)(NO_3)_2] (2, \bullet), [La(ph-tpy)(scur)(NO_3)_2] (3, \checkmark), [Gd(py-tpy)(scur)(NO_3)_2] (4, \blacktriangle), ethidium bromide (EB, \blacksquare) and Hoechst 33258 (\bullet) on the relative solution viscosities of ct-DNA at 37.0 (± 0.1) °C in 5 mM Tris-HCl buffer (pH 7.2) containing 2.5 – 20% DMF and 180 µM ct-DNA.

Fig. S29 A bar diagram showing the cleavage of SC pUC19 DNA (0.2 μ g, 30 μ M) by [Gd(py-tpy)(cur)(NO₃)₂] (**6**, light shade) and [Gd(py-tpy)(scur)(NO₃)₂] (**8**, dark shade) in UV-A light of 365 nm (6 W) in the presence of various additives in Tris-HCl buffer containing 10% DMF. The complex concentration and exposure time are 1.0 μ M and 2 h, respectively. The additive concentrations/quantities are: sodium azide, 0.5 mM; KI, 0.5 mM; TEMP, 0.5 mM; DABCO, 0.5 mM; D₂O, 16 μ L; DMSO, 4 μ L; catalase, 4 units and SOD, 4 units.

Fig. S30 Cell viability plots showing the photocytotoxicity of the ph-tpy (red squares in light and black squares in dark) and py-tpy (red triangles in light and black triangles in dark) in HeLa cells on 4 h incubation in dark followed by exposure to visible light (400-700 nm, 10 J cm⁻²) for 1 h, as determined from the MTT assay.

Fig. S31 Cell viability plots showing the photocytotoxicity of the Hscur ligand (red squares in light and black squares in dark) in HeLa cells on 4 h incubation in dark followed by exposure to visible light (400-700 nm, 10 J cm^{-2}) for 1 h, as determined from the MTT assay.

Fig. S32 Apoptotic cell death induced by complex **2** from flow cytometric analysis (photo-exposure time = 15 min, incubation time = 24 h).

Fig. S33 Apoptotic cell death induced by complex 4 from flow cytometric analysis (photoexposure time = 15 min, incubation time = 24 h).

Fig. S34 Reaction scheme and the reagents used for the synthesis of diglucosylcurcumin (Hscur) ligand.