New Tetrazole-based Cu(I) Homo- and Heteroleptic Complexes with Various Diphosphine Ligands: Synthesis, Characterization and Study of their Redox and Photophysical Properties

Cristina Femoni,^a Sara Muzzioli,^a Antonio Palazzi,^a Stefano Stagni,^a* Stefano Zacchini,^a Filippo Monti,^b Gianluca Accorsi,^b Margherita Bolognesi,^b Nicola Armaroli,^b* Massimiliano Massi,^c Giovanni Valenti^d, Massimo Marcaccio^d

^aDipartimento di Chimica Fisica ed Inorganica, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. e-mail: stefano.stagni@unibo.it

^bMolecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR-ISOF), Via Gobetti 101, I-40129 Bologna, e-mail: nicola.armaroli@cnr.it

^cDepartment of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia, 6845.

^dDipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, I-40126 Bologna, Italy.

SUPPORTING INFORMATION

Selected ESI-MS spectra

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Fig. S1. $[Cu_n(N^N)_n(dppe)_n]^{n+}$ (n = 1,2): (top) ESI-MS spectrum (positive ions region) and (down) comparison of the experimental isotopic pattern distribution (left) with those simulated for $[Cu(N^N)(dppe)]^+$ (a) and $[Cu_2(N^N)_2(dppe)_2]^{2+}$ (b), respectively.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Fig. S2. (top) ESI-MS spectrum (positive ions) of $[Cu_n(N^N)_n(dppm)_n]^{n+}$ (n = 1,2) and (down) comparison of the experimental isotopic pattern distribution (left) with those simulated for $[Cu(N^N)(dppm)]^+$ (a) and $[Cu_2(N^N)_2(dppm)_2]^{2+}$ (b), respectively.

Fig. S3. High Resolution ESI-MS spectra (positive ions) of $[Cu_n(N^N)_n(dppm)_n]^{n+}$ (n = 1,2) showing the gradual appearance (bottom) of the peaks spaced by 1/2 *m/z* units that are due to the dinuclear dimeric species $[Cu_2(N^N)_2(dppm)_2]^{2+}$.

Fig. S4. High Resolution ESI-MS spectra (positive ions) of $[Cu_n(N^N)_n(dppm)_n]^{n+}$ (n = 1,2) showing the isotopic distribution pattern, with peaks spaced by 1/2 m/z units, of the signal centered at 550 m/z, that is due to bis-cationic dimer $[Cu_2(N^N)(dppm)_2]^{2+}$.

NMR (¹H, ¹³C, ³¹P) spectra

Fig. S5. ¹H (CDCl₃, 400 MHz, r.t., top) and ¹³C (CDCl₃, 101 MHz, r.t., bottom) NMR spectra of the free ligand N^N

Fig. S6. ¹H NMR (CDCl₃, 400 MHz, r.t., top) and ¹³C NMR (CDCl₃, 101 MHz, r.t., bottom) spectra of the homoleptic complex $[Cu(N^N)_2][BF_4]$.

Fig. S7. ¹H NMR (CDCl₃, 400 MHz, r.t., top) and ¹³C NMR (CDCl₃, 101 MHz, r.t., bottom) spectra of the heteroleptic species considered as $[Cu_2(N^N)_2(dppe)_2][BF_4]_2$.

Fig. S8. VT ³¹P NMR (CDCl₃, 162 MHz) spectra of the heteroleptic species considered as $[Cu_2(N^N)_2(dppe)_2][BF_4]_2$ recorded at 298 K (top) and 233 K (bottom). The signal marked with an asterisk is relative to small amounts of $[Cu(dppe)_2][BF_4]$

Fig. S9. Stacking plot of ³¹P NMR spectra (CDCl₃ as the solvent, room temperature) of the complex considered as $[Cu_2(N^N)_2(dppe)_2][BF_4]_2$ at different concentrations: $2.0x10^{-2}$ M (top) and $2.0x10^{-4}$ M (bottom).

Fig. S10. Stacking plot of ³¹P NMR spectra (162 MHz, CD₃CN as the solvent, room temperature) of the samples obtained by dissolving solid $[Cu_2(N^N)_2(dppe)_2][BF_4]_2$ in CD₃CN. The spectra refer to samples at different concentrations: $2.0x10^{-2}$ M (top) and $2.0x10^{-4}$ M (bottom).

Fig. S11. VT ¹H NMR (CDCl₃, 400 MHz) spectra of the heteroleptic species considered as a mixture of $[Cu_2(N^N)_2(dppm)_2][BF_4]_2$ and $[Cu(N^N)(dppm)][BF_4]$ recorded at 298 K (top) and 233 K (bottom).

Fig. S12. ¹³C NMR (CDCl₃, 101 MHz, r.t.) spectrum of the heteroleptic species considered as a mixture of $[Cu_2(N^N)_2(dppm)_2][BF_4]_2$ and $[Cu(N^N)(dppm)][BF_4]$.

Fig. S13. Stacking plot of ³¹P NMR spectra (CD₃CN as the solvent, room temperature) of the complex considered as the mixture of monomeric (n=1) and dimeric (n=2) $[Cu_n(N^N)_n(dppm)_n][BF_4]_n$ at different concentrations: $2.0x10^{-2}$ M (top) and $2.0x10^{-4}$ M (bottom).

Fig. S14. H NMR (CDCl₃, 400 MHz, r.t., top) and ¹³C NMR (CDCl₃, 101 MHz, r.t., bottom) spectra of the heteroleptic species considered as $[Cu(N^N)(POP)][BF_4]$.

Fig. S15. VT 31 P NMR (CDCl₃, 162 MHz) spectra of the heteroleptic species considered as [Cu(N^N)(POP)][BF₄] recorded at 298 K (top) and 233 K (bottom).