SUPPORTING INFORMATION

Synthesis and Engineering Porosity of mixed metal Fe₂Ni MIL-88B Metal-Organic Framework

Authors: Gia-Thanh Vuong, Minh-Hao Pham, Trong-On Do*

Affiliations:

Department of Chemical Engineering, Centre de Recherche sur les Interfaces et la Catalyse (CERPIC), Laval University, Quebec, G1V 0A6, Canada

*Correspondence to: Trong-On.Do@gch.ulaval.ca.

Preparation

In a typical synthesis, 0.67 mmol of $FeCl_{3.}6H_{2}O$ 99%, 0.33 mmol of corresponding $Ni(NO_{3})_{2.}6H_{2}O$ 97% and 1 mmol of bdc 98% were dissolved in 10 ml of DMF. To this clear solution, 0.4 mmol of NaOH was added under stirring for 15 min. The mixture was then transferred into an Teflon-lined autoclave and heated at 100 °C for 15 h. Solid product was then recovered by filtration and washed several times with DMF.

Characterization

N₂ and CO₂ adsorption tests were carried out in an Autosorb 1 instrument, before analysis the samples were outgassed in vacuum for 3 hours at 150 °C. Specific surface area was calculated with the BET model in the linear range of P/Po = 0 - 0.15. KBr solid state FTIR was carried in a FT-BIORAD 450s system. MgO solid state UV-VIS was carried in a Cary 300 instrument. Powder X-ray diffraction (XRD) patterns were collected on a Bruker SMART APEX II X-ray diffractometer with Cu K α radiation ($\lambda = 1.5406$ Å) in the 2 θ range of $4 - 20^{\circ}$ at a scan rate of 1.0° min⁻¹. For XRD measurement of samples in Figure 3 and for crystal lattice calculation, the samples were dried in vacuum overnight at 100 °C, then the analysis was taken immediately. Peak fitting was carried out using Jade software package (http://www.materialsdata.com/). Simulation of Fe₃-MIL-88B XRD pattern was done on the crystalography data reported by Férey et al ¹ using Mercury software package (https://www.ccdc.cam.ac.uk/products/mercury/) Scanning electron microscopy (SEM) images were taken on a JEOL 6360 instrument at accelerating voltage of 3 kV

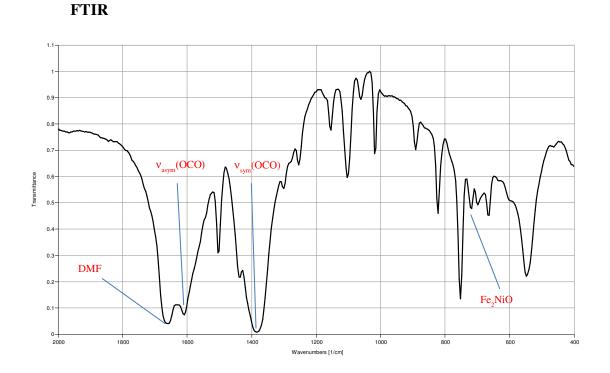


Figure S1. FTIR spectra of Fe₂Ni-MIL-88B.DMF

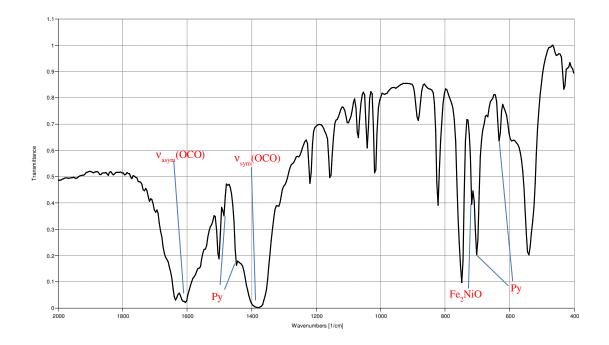
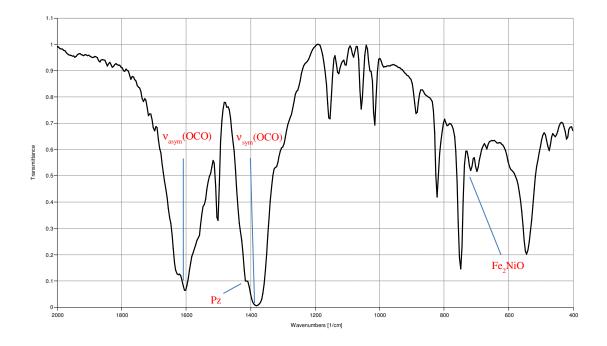
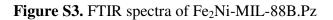




Figure S2. FTIR spectra of Fe₂Ni-MIL-88B.Py

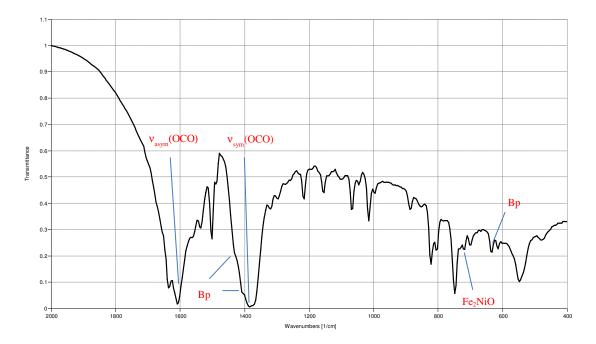


Figure S4. FTIR spectra of Fe₂Ni-MIL-88B.Bp

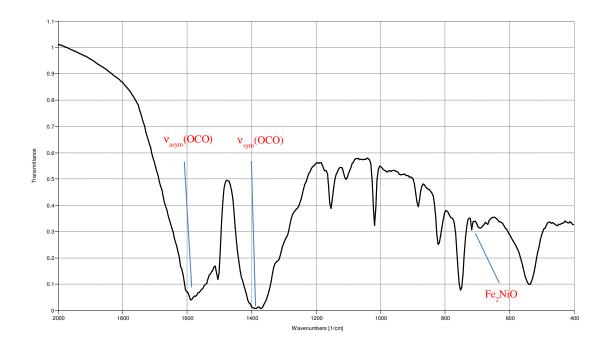


Figure S5. FTIR spectra of Fe₂Ni-MIL-88B.H₂O

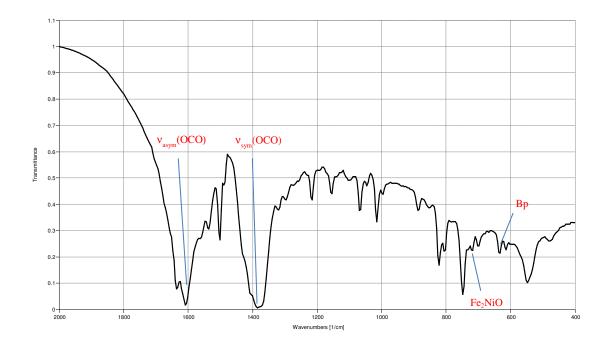


Figure S6. FTIR spectra of Fe₃-MIL-88B.DMF

Figure S7. Images of Fe₂Ni-MIL-88B.Bp (a), Fe₂Ni-MIL-88B.Pz (b), Fe₂Ni-MIL-88B.Py (c), Fe₂Ni-MIL-88B.DMF (d) Fe₂Ni-MIL-88B.H₂O (e) and Fe-MIL-88B.DMF (f).

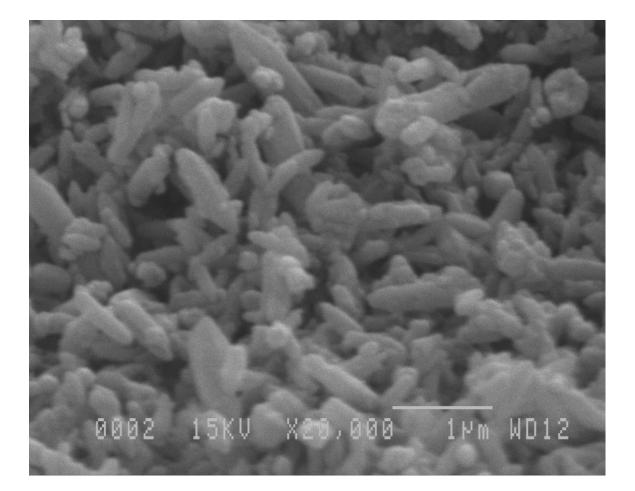


Figure S8. SEM image of as-synthesized Fe₂Ni-MIL-88B.DMF

Ligand exchange reactions:

+ DMF => H₂O: 0.25 g of Fe₂Ni-MIL-88B.DMF was added with 10 ml of water. The obtained mixture was stirred at room temperature for 3 hours, and then the solid was recovered by filtration and dried at 100 0 C overnight. XRD pattern showed in Figure 3e

+ H₂O=>DMF: 0.25 g of Fe₂Ni-MIL-88B.H₂O was added with 10 ml of DMF. After stirring for 30 min, the mixture was transferred into an autoclave and it was placed in oven at 110 $^{\circ}$ C for 3 days. The product was recovered by filtration and washed several times with DMF (Figure S9), BET specific surface area: 320 m²/g.

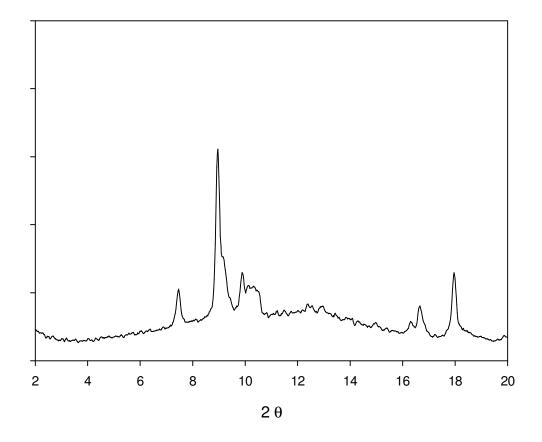


Figure S9: XRD pattern of Fe₂Ni-MIL-88B.DMF obtained from Fe₂Ni-MIL-88B.H₂O

+ DMF=>Py: 0.25 g of Fe₂Ni-MIL-88B.DMF was added with 10 g of pyridine. Very quickly the solid changed its color from brown to olive green. The mixture was stirred for 3 hours. The product was filtrated and dried in vacuum at 100 $^{\circ}$ C overnight. XRD pattern showed in Figure 3c.

+ Py = > DMF. 0.25 g of Fe₂Ni-MIL-88B.Py was added with 10 ml of DMF. The mixture was stirred at 100 °C for 3 days while the color gradually changed from olive green to yellow. The product was filtrated, washed with DMF and dried in vacuum at 100 °C overnight (Figure S10). BET specific surface area: $340 \text{ m}^2/\text{g}$.

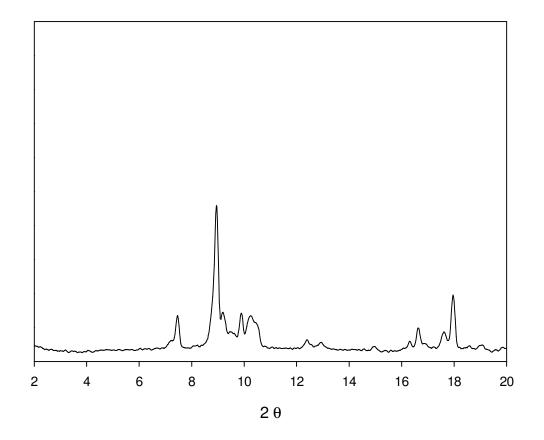


Figure S10: XRD pattern of Fe₂Ni-MIL-88B.DMF obtained from Fe₂Ni-MIL-88B. Py

+ DMF = > Pz: 0.25 g of Fe₂Ni-MIL-88B.DMF was added with 10 g of pyrazine. The mixture was heated to 70 $^{\circ}$ C as pyrazine melted, stirring was applied for 3 hours. The olive green product was recovered by hot filtration and dried in vacuum at 100 $^{\circ}$ C overnight. XRD pattern showed in Figure 3b.

+ Pz => DMF: 0.25 g Fe₂Ni-MIL-88B.Pz was added with 10 ml of DMF, the mixture was transferred into an autoclave and heated at 100 °C for 3 days. Brown solid product was filtrated and washed with DMF before drying in vacuum at 100 °C overnight (Figure S11). BET specific surface area: $325 \text{ m}^2/\text{g}$.

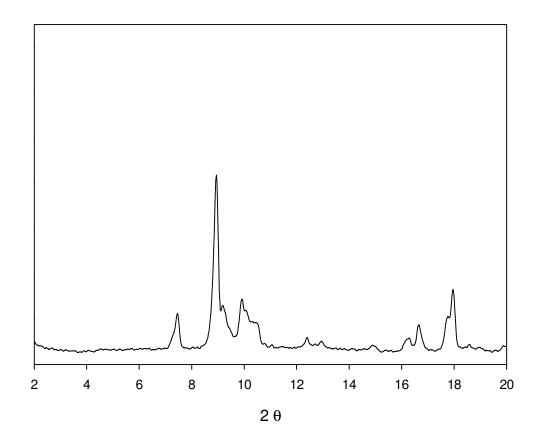


Figure S11: XRD pattern of Fe₂Ni-MIL-88B.DMF obtained from Fe₂Ni-MIL-88B. Pz

+ $Pz = > H_2O$: 0.25 of Fe₂Ni-MIL-88B.Pz in a vial was added with 15 ml of water. The vial was then sealed and stirred at 95 °C. After 3 hours the brown product was filtrated and dried in vacuum at 100 °C overnight (Figure S12). BET specific surface area: 15 m²/g.

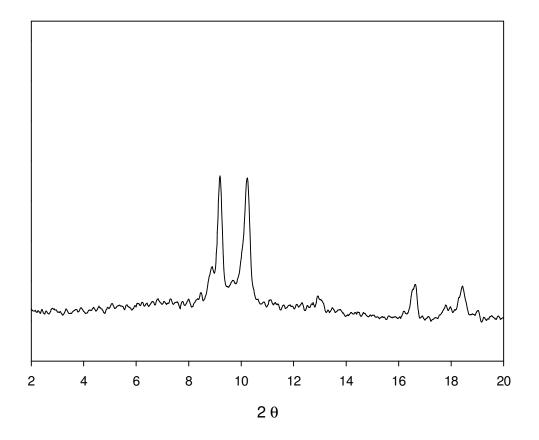


Figure S12: XRD pattern of Fe₂Ni-MIL-88B.H₂O obtained from Fe₂Ni-MIL-88B. Pz

+ $H_2O => Pz: 0.25$ g of Fe₂Ni-MIL-88B.H₂O was added with 10 g of pyrazine. The mixture was heated at 100 °C for 3 days. The olive green product was recovered by filtration and dried in vacuum at 100 °C overnight (Figure S13). BET specific surface area: 420 m²/g.

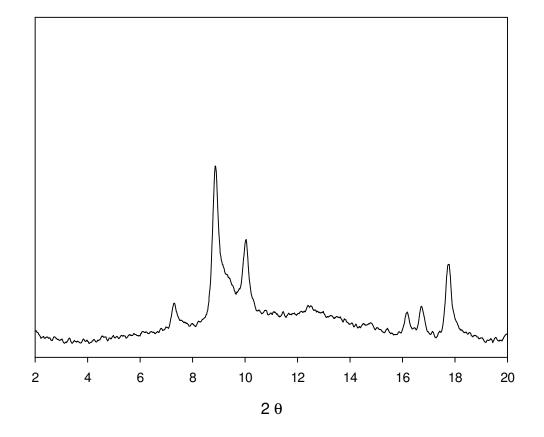


Figure S13: XRD pattern of Fe₂Ni-MIL-88B.Pz obtained from Fe₂Ni-MIL-88B. H₂O

+ Py => H₂O: 0.25 of Fe₂Ni-MIL-88B.Py in a vial was added with 15 ml of water. The vial was then sealed and stirred at 95 °C. After 3 hours the brown product was filtrated and dried in vacuum at 100 °C overnight (Figure S14), BET specific surface area: $10 \text{ m}^2/\text{g}$.

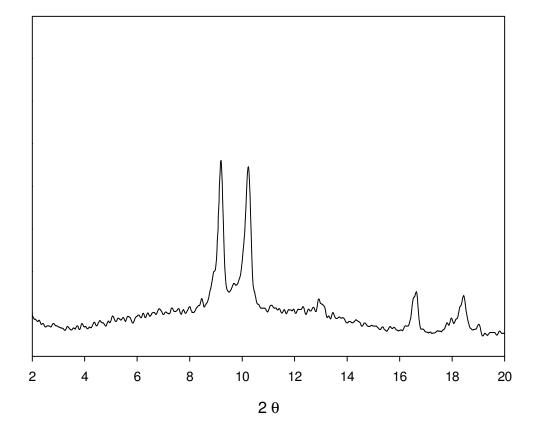


Figure S14: XRD pattern of Fe₂Ni-MIL-88B.H₂O obtained from Fe₂Ni-MIL-88B. Py

+ $H_2O => Py: 0.25$ g of Fe₂Ni-MIL-88B. H_2O was added with 10 ml of pyridine. The mixture was sealed in a vial and stirred at 100 °C for 4 days. Olive green product was filtered and dried in vacuum at 100 °C overnight (Figure S14). BET specific surface area: 530 m²/g

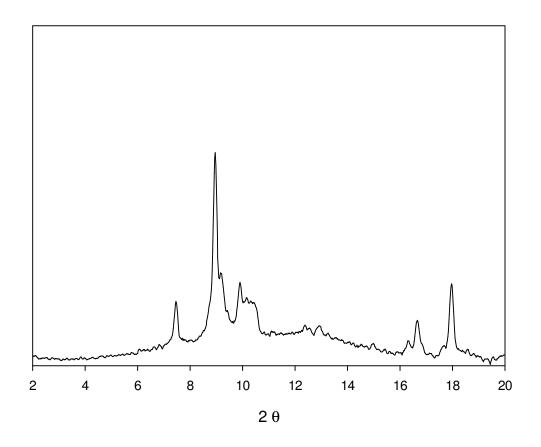



Figure S15: XRD pattern of Fe₂Ni-MIL-88B.Py obtained from Fe₂Ni-MIL-88B. H₂O

+ DMF => Bp: 0.16 g of bipyridine was introduced to 2 ml of DMF, to this solution 0.12 g of Fe₂Ni-MIL-88B.DMF was added. The mixture was then stirred at 100 °C for 4 days. Olive green product was filtered and dried in vacuum at 100 °C. XRD pattern showed in Figure 3a

+ Bp => DMF: 0.12 g of Fe₂Ni-MIL-88B.Bp was added with 15 ml of DMF, the mixture as transferred into an autoclave and it was placed in an oven at 100 $^{\circ}$ C for 6 days. Brown product

was filtered and washed with DMF before drying in vacuum overnight at 100 $^{\circ}$ C (Figure S16). BET specific surface area: 330 m²/g.

Figure S16: XRD pattern of Fe₂Ni-MIL-88B.DMF obtained from Fe₂Ni-MIL-88B.Bp **References**

(1) S. Bauer, C. Serre, T. Devic, P. Horcajada, J. r. m. Marrot, G. r. Férey, N. Stock, *Inorg. Chem.*2008, 47, 7568