Electronic Supplementary Information

Ethanol decomposition on Pd(110) surface: A density functional theory

investigation

Wenyue Guo*, Ming Li, Xiaoqing Lu*, Houyu Zhu, Yang Li, Shaoren Li, Lianming

Zhao

College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R.

China

*Corrsponding authors: Wenyue Guo, Xiaoqing Lu

E-mail address: wyguo@upc.edu.cn and luxq@upc.edu.cn

Telephone: 86–532–8698–1334

Fax numbers: 86–532–8698–3363

Fig. S1 Optimized adsorption geometries of the metastable configurations for the intermediates involved in the decomposition of ethanol over Pd(110)

Fig. S2 Reaction processes for the excluded steps relevant to short-bridge adsorbed *trans*-ethanol decomposition on Pd(110).

Fig. S3 Reaction processes for the excluded steps relevant to CH₃CH₂O decomposition and CO dissociation on

Pd(110).

Fig. S4 Reaction processes for the excluded steps relevant to decomposition of CH₃CHO and CH₃CO on Pd(110).

Fig. S5 Variations of the *d*-projected density of states of surface Pd atoms due to bonding with TS complex in the competitive bond scission of CH_3CH_2OH and CH_3CO on Pd(111). (a) The black and red lines represent the O–H and C^{α} –H bond scission of ethanol. (b) The black and red lines represent the C–C and C–H bond scission of CH_3CO .

species	configuration	ΔE^{a}	$d_{ m C/H-Pd}$	d _{O-Pd}	angles ^b
CH ₃ CH ₂ OH [*]	trans-off-top	11.7 (12.8)		2.31	33
	trans-short-bridge	9.0 (10.3)		2.53, 2.55	3
	cis-top	8.9 (9.8)		2.32	64
	cis-off-top	11.9 (12.3)		2.37	66
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{O}^*$	short-bridge, $\eta^1(O)$	44.1 (47.5)		2.12, 2.12	55
	long-bridge, $\eta^1(O)$	41.6 (44.3)		2.18, 2.18	28
CH ₃ CHO [*]	short-bridge, $\eta^1(C^{\alpha})$ - $\eta^1(O)$	13.4 (14.3)	2.20	2.11	86
	long-bridge, $\eta^1(C^{\alpha})$ - $\eta^1(O)$	10.7 (11.0)	2.21	2.15	87
CH_3CO^*	short-bridge, $\eta^1(C^{\alpha})$ - $\eta^1(O)$	50.9 (53.4)	1.94	2.28	79
	long-bridge, $\eta^1(C^{\alpha})$ - $\eta^1(O)$	51.2 (53.3)	1.94	2.29	85
	top, $\eta^1(C^{\alpha})$	49.8 (51.9)	1.96		60
	short-bridge, $\eta^2(C^{\alpha})$	49.9 (51.7)	2.11, 2.11		62
H^*	pseudo-fcc(111)	63.5 (63.3)	1.78, 1.78, 1.79		
	pseudo-hcp (111)	62.7 (61.5)	1.79, 1.86, 1.86		
	short-bridge	62.3 (62.5)	1.68, 1.68		
	long-bridge	63.8 (61.7)	1.88, 1.94		
CO^*	short-bridge	36.2 (41.0)	2.00, 2.00		0
	long-bridge	30.4 (35.1)	2.01, 2.01		0
	top	32.6 (34.1)	1.86		0
C^*	pseudo-fcc(111)	143.2 (143.2)	1.86, 1.87, 1.87		
	short-bridge	127.5 (127.3)	1.81, 1.82		
	long-bridge	158.9 (158.9)	1.93, 1.93		
CH^{*}	pseudo-fcc(111)	128.6 (133.2)	1.95, 1.95, 1.96		
	short-bridge	113.7 (117.7)	1.87, 1.87		
	long-bridge	131.4 (135.0)	2.03, 2.03		
${\rm CH_2}^*$	short-bridge	84.8 (89.2)	1.99, 1.99		
	long-bridge	81.4 (86.2)	2.03, 2.03		
${\rm CH_3}^*$	top	39.4 (42.7)	2.03		
${\rm CH_4}^{*}$	short-bridge	1.4 (1.1)	3.19, 3.25		
	long-bridge	1.9 (1.8)	3.34, 3.35		
	top	1.3 (1.7)	2.97		

Table S1 Adsorption sites, adsorption energies ΔE_{ads} (in kcal mol⁻¹), and geometric parameters (in angstroms and degrees) for intermediates involved in ethanol decomposition on Pd(110).

^{*a*} Parameters in parentheses are adsorption energies without ZPEC. ^{*b*} Values are angles between the surface normal and the C–O axis in the corresponding species.

adsorption mode	reaction ^b	ΔE^{c}	E_{a}
trans-top	$CH_3CH_2OH^* \rightarrow [CH_3CH_2O + H]^*$	11.3	29.8
	$CH_3CH_2OH^* \rightarrow [CH_2CH_2OH + H]^*$	12.4	29.9
	$CH_3CH_2OH^* \rightarrow [CH_3CHOH + H]^*$	5.7	45.1
	$CH_3CH_2OH^* \rightarrow [CH_3CH_2 + OH]^*$	14.2	44.9
	$CH_3CH_2OH^* \rightarrow [CH_3 + CH_2OH]^*$	20.9	67.6
trans-short bridge	$CH_3CH_2OH^* \rightarrow [CH_3CH_2O + H]^*$	7.9	23.7
	$CH_3CH_2OH^* \rightarrow [CH_2CH_2OH + H]^*$	10.8	37.8
	$CH_3CH_2OH^* \rightarrow [CH_3CHOH + H]^*$	2.5	29.0
	$CH_3CH_2OH^* \rightarrow [CH_3CH_2 + OH]^*$	16.1	49.9
	$CH_3CH_2OH^* \rightarrow [CH_3 + CH_2OH]^*$	18.0	72.3
cis-top	$CH_3CH_2OH^* \rightarrow [CH_3CH_2O + H]^*$	6.1	32.5
	$CH_3CH_2OH^* \rightarrow [CH_2CH_2OH + H]^*$	9.5	33.2
	$CH_3CH_2OH^* \rightarrow [CH_3CHOH + H]^*$	5.1	44.7
	$CH_3CH_2OH^* \rightarrow [CH_3CH_2 + OH]^*$	10.5	52.6
	$CH_3CH_2OH^* \rightarrow [CH_3 + CH_2OH]^*$	15.6	63.9
cis-off top	$CH_3CH_2OH^* \rightarrow [CH_3CH_2O + H]^*$	7.6	29.6
	$CH_3CH_2OH^* \rightarrow [CH_2CH_2OH + H]^*$	9.8	28.7
	$CH_3CH_2OH^* \rightarrow [CH_3CHOH + H]^*$	4.3	41.9
	$CH_3CH_2OH^* \rightarrow [CH_3CH_2 + OH]^*$	9.4	53.8
	$CH_3CH_2OH^* \rightarrow [CH_3 + CH_2OH]^*$	13.1	64.5

Table S2 Thermodynamic and kinetic parameters (in kcal mol⁻¹ and s⁻¹) for the elementary reactions of ethanol decomposition from different adsorption geometries on $Pd(110)^a$.

^a Values are without ZPEC. ^b [A+B]* denotes the coadsorbed A and B speices. ^c Reaction energies of the reactions are calculated as $\Delta E = E_{FS} - E_{IS}$, where E_{FS} and E_{IS} are the energies of FS and IS without ZPEC, respectively.

Table S3 Changes (in kcal mol⁻¹) of energy barriers and contribution factors for the common reactions steps involved in ethanol decomposition when switching from Pd(111) to $Pd(110)^a$

Reactions ^b	ΔE_a	ΔE_{AB}^{IS}	ΔE_{AB}^{TS}	$\Delta E_{ m int}^{TS}$	ΔE_A^{TS}	ΔE_B^{TS}
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{OH}^* \rightarrow [\mathrm{CH}_3\mathrm{CH}_2\mathrm{O}^* + \mathrm{H}^*]$	-14.5	-1.4	13.1	-7.6	4.5	1.0
$\mathrm{CH}_3\mathrm{CHO}^* \to [\mathrm{CH}_3\mathrm{CO}^* + \mathrm{H}^*]$	-2.4	2.0	4.5	-3.6	0.3	0.6
$\mathrm{CH}_{3}\mathrm{CO}^{*} \rightarrow [\mathrm{CH}_{3}^{*} + \mathrm{CO}^{*}]$	-16.4	2.6	19	-15	7.2	-3.2

^{*a*} Values without ZPEC. ^{*b*} [A + B] denotes the coadsorbed A and B species.

reactions on Pd(110)	ΔE^{g}_{AB}	E_{AB}^{IS}	$E_{ m int}^{TS}$	E_A^{TS}	E_B^{TS}	E_a
$\rm CH_3\rm CH_2\rm OH^* \rightarrow \rm CH_3^* + \rm CH_2\rm OH^*$	91.8	10.3	-11.8	12.9	5.1	72.3
$CH_3CH_2O^* \rightarrow CH_3^* + CH_2O^*$	26.4	47.5	-5.9	4.3	-8.5	72.2
$\rm CH_3CHO^* \rightarrow \rm CH_3^* + \rm CHO^*$	91.5	11.0	-1.4	29.0	44.3	27.8
$\rm CH_3CO^* \rightarrow \rm CH_3^* + \rm CO^*$	25.0	53.3	-8.4	24.3	28.5	17.1
reactions on Pd(111)	ΔE^g_{AB}	E_{AB}^{IS}	$E_{ m int}^{TS}$	E_A^{TS}	E_B^{TS}	E_a
$\mathrm{CH_3CH_2OH^*} \rightarrow \mathrm{CH_3^*} + \mathrm{CH_2OH^*}$	91.8	11.7	-2.1	6.3	12.6	82.5
$\rm CH_3CHOH^* \rightarrow \rm CH_3^* + \rm CHOH^*$	65.9	42.5	-0.1	8.0	33.3	67.0
$\rm CH_3CHO^* \rightarrow \rm CH_3^* + \rm CHO^*$	91.5	9.0	4.8	27.4	42.1	35.8
$\rm CH_3CO^* \rightarrow \rm CH_3^* + \rm CO^*$	25.0	50.7	7.5	25.1	24.6	33.5
$CH_2CO^* \rightarrow CH_2^* + CO^*$	95.2	26.6	13.0	76.4	27.6	30.8
$\mathrm{CHCO}^* \rightarrow \mathrm{CH}^* + \mathrm{CO}^*$	96.8	68.6	7.5	123.9	26.5	22.5

Table S4 Energy barriers and contribution factors (in kcal mol^{-1}) for the C–C bond scission reactions involved in ethanol decomposition on Pd surfaces^{*a*}

^{*a*} Values without ZPEC.