Electronic Supplementary Information for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2008

Supporting Information for

Catalytic Mechanism of Cytochrome P450 for N-methylhydroxylation of Nicotine: Reaction Pathways and Regioselectivity of the Enzymatic Nicotine Oxidation

Dongmei Li,*a,b Xiaoqin Huang,b Jianping Lina and Chang-Guo Zhan*b

^a College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key
 Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China; Fax:
 +86-22-23507760; Tel: +86-22-23506290; E-mail: dongmeili@nankai.edu.cn
 ^b Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South

Table of Contents:

- 1. *Table S1*. Relative free energies (in kcal/mol) calculated at QM/MM(B1:AMBER), QM/MM(B2:AMBER) and QM/MM-FEP(B2:AMBER) levels including zero-point and thermal corrections for the QM subsystem.
- 2. **Table S2.** Imaginary vibrational frequencies calculated for the transition states.

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, USA; Tel: 859-323-3943; E-mail: zhan@uky.edu

Electronic Supplementary Information for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008

Table S1. Relative free energies (in kcal/mol) calculated at the QM/MM(B1:AMBER), QM/MM(B2:AMBER) and QM/MM-FEP(B2:AMBER) levels including zero-point and thermal corrections for the QM subsystem.

	QM/MM (B1:AMBER)+ZPE	QM/MM (B2:AMBER)+ZPE	QM/MM-FEP (B2:AMBER) + ZPE				
CYP2A6-SR _t complex							
⁴ RC	0.0	0.0	0.0				
$^{4}TS_{H}$	18.8	17.9	18.0				
⁴ IM	1.6	-2.4	-1.8				
⁴ TS _{reb}	1.9	-2.9	-2.3				
⁴ PC	-42.7	-45.7	-45.3				
² RC	0.0	0.0	0.0				
² TS _H	16.8	16.2	15.5				
² IM	3.4	1.3	0.7				
$^{2}TS_{reb}$	3.4	1.1	-0.2				
² PC	-37.0	-41.5	-41.6				
CYP2A6-SR _c complex							
⁴ RC	0.0	0.0	0.0				
⁴ TS _H	21.2	20.9	19.4				
⁴ PC	-45.2	-49.1	-46.0				
² RC	0.0	0.0	0.0				
² TS _H	19.6	19.5	18.0				
² PC	-38.4	-43.3	-42.6				

Table S2. Imaginary vibrational frequencies calculated for the transition states

CYP2A6-SR _t complex			CYP2A6-SR _c complex		
⁴ TS _H	i1638	$^{4}TS_{reb}$	i85	4TS_H	i1738
$^{2}TS_{H}$	i1199	$^{2}TS_{reb}$	i79	$^{2}TS_{H}$	i1091