Supporting Information

An NBD-armed thiacalix[4]arene-derived colorimetric and fluorometric chemosensor for silver cation: a metal-ligand receptor of anions

Yu Fu,^a Lan Mu,^a Xi Zeng,^{*a} Jiang-Lin Zhao,^a Carl Redshaw,^b Xin-Long Ni,^{*a} and Takehiko Yamato^c

^aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China

^b School of Chemistry, University of Hull, Hull, HU6 7RX (UK)

^cDepartment of Applied Chemistry, Faculty of Science and Engineering Saga University 1 Honjo-machi 1, Saga-shi, Saga 840-8502, Japan

Figure S1. ¹H NMR spectra of compound **2a** in CDCl₃ (a) and (b), and in CDCl₃/D₂O (10:1, v/v) (c).

Figure S2. ¹³C NMR spectra of compound 2a in CDCl₃.

Figure S3. HPLC-ESI mass spectra (positive) of compound 2a.

Figure S4. ¹H NMR spectra of compound **2a** in CDCl₃ (a) and (b), and in CDCl₃/D₂O (10:1, v/v) (c).

Figure S5. ¹³C NMR spectra of compound 2b in CDCl₃.

Figure S6. HPLC-ESI mass spectra (positive) of compound 2b.

Figure S7. Side views of the X-ray crystal structure of a) **2a** and b) **2b**. The thermal ellipsoids are drawn at 50 % probability; hydrogen atoms are omitted for clarity.

X-ray crystal data for receptors 2a: Recrystallized from CHCl₃/C₂H₅OH (4:1, v/v) in the presence small amount of benzene. Crystal data: C₅₈H₇₃N₅O₁₀S₄; M = 1128.4; crystal system: monoclinic; space group: P 21; a = 14.792(9), b = 13.313(8), c = 18.498(12) Å; $\alpha = 90.00^{\circ}$, $\beta = 105.325(9)^{\circ}$, $\gamma = 90.00^{\circ}$; V = 3513(4) Å³; Z = 2; $D_c = 1.366$ g cm⁻³; crystal dimensions $0.20 \times 0.20 \times 0.18$ mm³; T = 293(2) K; $R_{int} = 0.1152$, $R [I > 2\sigma(I)]^a = 0.1883$ for 7459 unique reflections.

Figure S8. HPLC-ESI mass spectra (positive) of **2a** and **2a**/Ag⁺; a) **2a** (10.0 μ M), b) **2a** with Ag⁺ (1.0 equiv.).

Figure S9. IR studies of compound 2a and 2a/Ag⁺; a) 2a (10.0 μ M), b) 2a with Ag⁺ (1.0 equiv.).

Figure S10. Plot of fluorescence intensity change (533 nm) of **2a** with varied concentrations of Ag⁺ at 298 K, the limit of detection of Ag⁺ was calculated to be 2.92 $\times 10^{-7}$ M by the formula (3 σ /K).

Figure S11. Plot of fluorescence intensity change (533 nm) of **2b** with varied concentrations of Ag⁺ at 298 K, the limit of detection of Ag⁺ was calculated to be 6.50 $\times 10^{-7}$ M by the formula (3 σ /K).

Figure S12. Fluorescence intensity responses of receptors **2a** and **2b** to 50 μ M various tested ions (white bar) and to the mixture 50 μ M tested cations with 50 μ M Ag⁺ (gray bar) at 298 K. $\lambda_{ex} = 466$ nm.

Figure S13. Partial ¹H NMR spectral changes of **2a** and **2b** (each at 5.0 mM) in CDCl₃/CDCN (10:1, v/v) upon addition of 0.5 and 1.0 eq. of AgClO₄ at 298 K.

Figure S14. UV-vis absorption spectra changes of receptors a) **2a** and b) **2b** (each of 10.0 μ M) with the addition of various anions (10.0 eq.) in THF solution at 298 K.

Figure S15. Fluorescence emission spectra changes of receptors a) **2a** and b) **2b** (each of 10.0 μ M) upon addition of various anions (10.0 eq.) in THF solution at 298 K. $\lambda_{ex} = 466$ nm.

Figure S16. Visual color changes for receptor 2a upon addition of various anions in THF solution.

Figure S17. UV-vis and fluorescence spectra changes of receptor **2a** (10.0 μ M) upon addition of various anions (10.0 eq.) in H₂O/THF (1:4, v/v, pH = 7.5) solution at 298 K. $\lambda_{ex} = 466$ nm.

Figure S18. UV-vis and fluorescence spectra changes of receptor **2b** (10.0 μ M) upon addition of various anions (10.0 eq.) in H₂O/THF (1:4, v/v, pH = 7.5) solution at 298 K. $\lambda_{ex} = 466$ nm.

Figure S19. Partial ¹H NMR spectral changes of **2a** (5.0 mM) in CDCl₃ upon addition of 1.0 eq. of Ag^+ and F^- ions at 298 K.

Figure S20. Changes in the UV-vis absorption spectra of receptor $2a \cdot Ag^+$ upon addition of increasing concentrations of a) F^- , b) AcO⁻ and c) I⁻ anions in aqueous solution (0–50 μ M) at 298 K in H₂O/THF (1:4, v/v, pH = 7.5) solution.

Figure S21. Benesi-Hilderbrand plot of $2a \cdot Ag^+$ and $2b \cdot Ag^+$ with I^- anion.

Figure S22. Changes in the UV-vis absorption and fluorescence emission spectra of receptor $2b \cdot Ag^+$ upon addition of various anions and I⁻ anion (5.0 eq.) at 298 K in H₂O/THF (1:4, v/v, pH = 7.5) solution.

Figure S23. Visual color changes for receptor a) **2b**, b) **2b**•Ag⁺, c) **2b**•Ag⁺ + F⁻, d) **2b**•Ag⁺ + AcO⁻, e) **2b**•Ag⁺ + I⁻ in H₂O/THF (1:4, v/v, pH = 7.5) solution.