Supporting Information

Synthesis, Photophysics and Reverse Saturable Absorption of Bipyridyl Platinum(II) Bis(arylfluorenylacetylide) Complexes

Rui Liu, Naveen Dandu, Yuhao Li, Svetlana Kilina, Wenfang Sun*

^aDepartment of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, USA.

Figure S1. Normalized UV-Vis absorption spectra of 1b in different solvents. $A_{436} = 0.08$ in a 1 cm cuvette.

Figure S2. Normalized UV-Vis absorption spectra of 1d in different solvents. $A_{436} = 0.08$ in a 1 cm cuvette.

Figure S3. Calculated absorption spectra for complexes 1a - 1d; vertical lines represent excited states and the corresponding oscillator strength. Labeled numbers represent the states whose NTO's are shown in Tables 2 and 3.

Figure S4. Normalized emission spectra of 1b in different solvents at room temperature and in BuCN glassy matrix at 77 K, $\lambda_{ex} = 436$ nm.

Figure S5. Normalized emission spectra of 1d in different solvents at room temperature and in BuCN glassy matrix at 77 K, $\lambda_{ex} = 436$ nm.

Figure S6. Normalized UV-Vis absorption spectra of **3a** in different solvents. $A_{365} = 0.08$

Figure S7. Normalized UV-Vis absorption spectra of **3b** in different solvents. $A_{365} = 0.08$

Figure S8. Normalized UV-Vis absorption spectra of 3c in different solvents. $A_{365} = 0.08$

Figure S9. Normalized UV-Vis absorption spectra of 3d in different solvents. $A_{365} = 0.08$

Figure S10. Normalized emission spectra of ligands **3a**, $\lambda_{ex} = 335$ nm, **3b**, $\lambda_{ex} = 350$ nm, **3c**, $\lambda_{ex} = 355$ nm and **3d**, $\lambda_{ex} = 345$ nm, in CH₂Cl₂ (1×10⁻⁵ mol·L⁻¹).

Figure S11. Normalized emission spectra of 3a in different solvents at room temperature, $\lambda_{ex} = 320$ nm.

Figure S12. Normalized emission spectra of 3b in different solvents at room temperature, $\lambda_{ex} = 365 \text{ nm.}$

Figure S13. Normalized emission spectra of 3c in different solvents at room temperature, $\lambda_{ex} = 365 \text{ nm.}$

Figure S14. Normalized emission spectra of 3d in different solvents at room temperature, $\lambda_{ex} = 365 \text{ nm}.$

Figure S15. Time-resolved triplet transient difference absorption spectra of **3a** in toluene. $\lambda_{ex} = 355$ nm. A = 0.4 at 355 nm in a 1-cm cuvette.

Figure S16. Time-resolved triplet transient difference absorption spectra of 3b in toluene. $\lambda_{ex} = 355$ nm. A = 0.4 at 355 nm in a 1-cm cuvette.

Figure S17. Time-resolved triplet transient difference absorption spectra of **3c** in toluene. $\lambda_{ex} = 355$ nm. A = 0.4 at 355 nm in a 1-cm cuvette.

Figure S18. Time-resolved triplet transient difference absorption spectra of **3d** in toluene. $\lambda_{ex} = 355$ nm. A = 0.4 at 355 nm in a 1-cm cuvette.

Table S1. Optimized geometries of complexes 1a – 1d

Table S2. Schematic representation of the magnitude of the static dipole moments and directions of Pt(II) complexes 1a - 1d at their ground state and excited state.^a

^a The different colors in the structure represent the Milliken charge density distributions, with the green color indicating positive charges and red color representing negative charges.

Table S3 NTOs representing transitions corresponding to singlet emission (S_1) of complexes **1a** - **1d** and triplet emission (T_1) of the complex **1b** calculated using CAM-B3LYP functional.

	Excited State and Properties	HOLE	ELECTRON
1a	S_1 393 nm $f_{O.S.} = 0.59$		
1b	S_1 390 nm $f_{O.S.} = 0.44$	8284 9288	
	T ₁ 820 nm		
1c	S_1 392 nm $f_{O.S.} = 0.68$		
1d	S_1 385 nm $f_{O.S.} = 0.37$		