SUPLEMENTARY MATERIALS

of the manuscript

From 7-azaindole to adenine: molecular recognition aspects on mixed-ligand

Cu(II) complexes with deaza-adenine ligands

Corresponding author: Alicia Domínguez-Martín.

Corresponding author Institution: Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain. E-mail: <u>adominguez@ugr.es</u> Telephone number: +34 958 243 853.

TABLE OF CONTENTS:

S1. Experimental methods
S2. Table S1: Gas phase relative Gibbs energies (ΔG_r) and selected geometrical parameters at the UM06-L/6-31+G*// UM06-L/6-31+G* level
S3. XYZ and energies for the structures studied10
S4. Additional Crystal data and Structural information concerning [Cu(TEBIDA)(H7azain)(H ₂ O)]·3H ₂ O (1)73
Table S4.1. Crystal data and structure refinement.
Table S4.2. Selected bond lengths [Å] and angles [deg].
Table S4.3. Hydrogen bonds for [Cu(TEBIDA)(H7azain)(H ₂ O)]·3H ₂ O [Å and deg.] Figure and comments S4.4. Complex molecule of [Cu(TEBIDA)(H7azain)(H ₂ O)]·3H ₂ O (left) and view of the 3D network in the ba plane (right).
S5. Additional Crystal data and Structural information concerning
${[Cu(FBIDA)(H7azain)] \cdot 2H_2O_n (2)$
Table S5.1. Crystal data and structure refinement.
Table S5.2. Selected bond lengths [Å] and angles [deg].
Table S5.3. Hydrogen bonds for {[Cu(FBIDA)(H7azain)]·2H₂O} _n [Å and deg.]
Figure and comments S5.4. View of the 3D network in the ac plane.
S6. Additional Crystal data and Structural information concerning
{[Cu(CBIDA)(H4abim)]·2H ₂ O} _n (3)80
Table S6.1. Crystal data and structure refinement.
Table S6.2. Selected bond lengths [Å] and angles [deg].
Table S6.3. Hydrogen bonds for {[Cu(CBIDA)(H4abim)]·2H ₂ O} _n [Å and deg.]
Figure and comments S6.4. Fragment of the polymer ${[Cu(CBIDA)(H4abim)]} \cdot 2H_2O_n (left)$ and view of the 3D network in the bc plane (right).
S7. Additional Crystal data and Structural information concerning
[Cu(H ₂ EDTA)(H4abim)]·0.5H ₂ O (4)83
Table S7.1. Crystal data and structure refinement.
Table S7.2. Selected bond lengths [Å] and angles [deg].
Table S7.3. Hydrogen bonds for [Cu(H ₂ EDTA)(H4abim)]·0.5H ₂ O [Å and deg.]
Figure and comments S7.4. 2D layers in the crystal of compound 4 and detail of pi,pi-
stacking interactions between anti-parallel H4abim ligands.
S8. Additional Crystal data and Structural information concerning
{[Cu ₂ (IDA) ₂ (µ ₂ -N7,N9-H5abim)]·H ₂ O} _n (5)
Table S8.1. Crystal data and structure refinement.
Table S8.2. Selected bond lengths [Å] and angles [deg].
Table S8.3. Hydrogen bonds { $[Cu_2(IDA)_2(\mu_2-N7,N9-H5abim)] \cdot H_2O_n$ [Å and deg.]
Figure and comments S8.4. Fragment of the polymer {[$Cu_2(IDA)_2(\mu_2-N7,N9-H5abim)$]·H ₂ O} _n (left) and view of the 3D network in the ba plane (right).

 S9. Additional Crystal data and Structural information concerning [Cu₂(NBzIDA)₂(µ₂-N7,N9-H5abim)(H₂O)₂]·H₂O (6)
 S10. Additional Crystal data and Structural information concerning [Cu(IDA)(H7deaA)(H₂O)]·2H₂O (7)
 S11. Additional Crystal data and Structural information concerning [Cu₂(MIDA)₂(µ₂-N1-N3-H7deaA)(H₂O)₂]·5H₂O ·H₂O (8)
 S12. Additional Crystal data and Structural information concerning [Cu(NBzIDA)(H7deaA)]_n (9)
 S13. Additional Crystal data and Structural information concerning [Cu(MEBIDA)(H7deaA)]_n (10)
S14 . PI,PI-Stacking interactions analyses of compounds 1, 4, 6, 7, 8 and 9

S15. FT-IR spectra	
S16. Electronic spectra	
S17. EPR spectra	
S18 . Thermogravimetric analysis of compound $[Cu_2(MIDA)_2(\mu_2-N1-N3-H7deaA)(H_2O)_2]\cdot 5H_2O$ (8)	

S1. Experimental methods

Computational details

DFT calculations, at the B3LYP¹ and unrestricted M06-L/6-31G* theoretical levels for the isolated ligands and copper complexes, respectively, have been performed with the Gaussian09 program,² using the 6-31G* basis set, for the isolated ligands and the 6-31+G** one for the copper complexes.³ All structures were fully optimized at the following theoretical levels: B3LYP/6-31+G**//B3LYP/6-31+G** for the isolated ligands and M06-L/6-31G*//M06-L/6-31G* for the copper(II) complexes. The most stable spin multiplicities for the mono- and dinuclear copper complexes studied were doublet and triplet, respectively. The local stability of all structures was checked through the eigen values of the matrix of second derivatives (Hessian); all energetic minima presented no imaginary frequencies. Solvent effect was taken into account by means of the self consistent reaction field method (SCRF), selecting PCM algorithm with water as solvent.⁴

In order to corroborate the above mentioned theoretical levels and model systems, we performed additional calculations for the most stable Ia-3p9 complex with MIDA, consisted in the following tests: (i) Calculations improving the basis set (6-311++G^{**}); (ii) Calculations with the inclusion of one water molecule coordinated to copper (similar to the crystallographic data); (iii) Calculations including the PCM solvation method; (iv) Calculations with geometrical optimizations starting from different geometries (variation in the dihedral angles between the chelating ligand and the deaza-adenine) in order to explore the potential energy surface (PES) in this region. All these additional calculation tests yielded similar geometries to those obtained at the gas phase and with standard theoretical levels above mentioned.

X-Ray Structure Determinations

Measured crystals were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation. Suitable crystals were mounted on MiTeGen MicromountsTM and these samples were used for data collection. Data were collected with Bruker X8 KappaAPEXII (1, 3 and 10, 100 K), Bruker X8 Proteum (2, 7, 9) diffractometers, whereas those of 4, 5, 6 and 8 were collected at the ESRF synchrotron BM16 beam line (Grenoble, France). The data were processed with APEX2 (1, 2, 3, 7, 9 and 10)⁵ and HKL2000 (4-6 and 8)⁶ programs and corrected for absorption using SADABS.⁷ The structures were solved by direct methods⁸ which revealed the position of all non-hydrogen atoms. These atoms were refined on F² by a full-matrix least-squares procedure using anisotropic displacement parameters.⁸ All hydrogen atoms were located in difference Fourier maps and included as fixed contributions riding on attached atoms with isotropic thermal displacement parameters 1.2 times those of the respective atom. Geometric calculations were carried out with PLATON⁹ and drawings were produced with

PLATON⁹ and MERCURY.¹⁰ Additional crystal data and more information about the X-ray structural analyses are shown in Supplementary material S3 to S13. Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 881136 – 881145 from 1 to 10 respectively. Copies of this information may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: 44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Other Physical methods

Analytical data were obtained in a Thermo-Scientific (Flash 2000) elemental micro-analyser. Infrared spectra were recorded by using KBr pellets on a Jasco FT-IR 410 or a Jasco FT-IR 6300 spectrometer. TG analyses were carried out in air-dry flow (100 mL/min) by a Shimadzu thermo-balance TGA-DTG-50H instrument, coupled with a FT-IR Nicolet Magma 550 spectrometer. A series of FT-IR spectra (20-30 per sample) of the evolved gasses were time-spaced recorded during the TG experiment. Diffuse reflectance (electronic) spectra were recorded in a Varian Cary-5E spectrophotometer. X-band EPR measurements were carried out on a Bruker ELEXSYS 500 spectrometer with a maximum available microwave power of 200 mW and equipped with a super-high-Q resonator ER-4123-SHQ. For Q-band studies, EPR spectra were recorded on a Bruker EMX system equipped with an ER-510-QT resonator. The magnetic field was calibrated by a NMR probe and the frequency inside the cavity was determined with a Hewlett-Packard 5352B microwave frequency counter. Computer simulation: WINEPR-Simfonia, version 1.5, Bruker Analytische Messtechnik GmbH).

References

- 1 A.D.J. Becke, Chem. Phys. 1993, 98, 5648.
- 2 Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- 3 W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys. 1972, 56, 2257.
- 4 S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117-29.
- 5 BRUKER, APEX2 Software, Bruker AXS Inc., V2010.11, Madison, Wisconsin, USA, 2010.
- 6 Z. Otwinowski and W. Minor, in Methods in Enzymology, ed. C.W. Carter, Jr. and R. M. Sweet, Academic Press, New York, 1997, vol. 276, part A, pp. 307-326.

- 7 G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 2009.
- 8 G.M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
- 9 A.L. Spek, PLATON. A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2010.
- 10 C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P.A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466.

S2. Table S-1: Gas phase Relative Gibbs Energies (ΔG_r) and selected geometrical parameters for the different mono- and di-nuclear Cu(II) complexes of deaza-adenines with chelant ligans calculated at the UM06-L/6-31+G*//UM06-L/6-31+G* theoretical level.

Compound ^a	Nomenclature	NC ^b	NP ^c	ΔG _{rel} (Kcal/mol)	Cu⋯N (Å)	O…HN (Å)	<o-cu-n-c (°)</o-cu-n-c
la-3p9	Cu(MIDA)(H7azain)	3	9	0.0	1.988	1.799	0.2
la-9p3	Cu(MIDA)(H7azain)	9	3	3.5	1.934	1.746	1.8
lb-3p9	Cu(NBzIDA)(H7azain)	3	9	0.0	1.989	1.795	1.1
Ib-9p3	Cu(NBzIDA)(H7azain)	9	3	3.2	1.935	1.746	1.0
Ila-3p7	Cu(MIDA)(H4abim)	3	7	10.2	1.973		60.3
Ila-3p9	Cu(MIDA)(H4abim)	3	9	0.0	1.983	1.813	0.1
Ila-7p3	Cu(MIDA)(H4abim)	7	3	9.0	1.947		1.5
Ila-7p9	Cu(MIDA)(H4abim)	7	9	3.4	1.959		0.0
Ila-9p3	Cu(MIDA)(H4abim)	9	3	2.7	1.938	1.759	1.5
lla-9p7	Cu(MIDA)(H4abim)	9	7	10.8	1.969		30.4
IIc-3p7	Cu(CBIDA)(H4abim)	3	7	10.0	1.979		63.3
IIc-3p9	Cu(CBIDA)(H4abim)	3	9	0.0	1.983	1.813	0.6
IIc-7p3	Cu(CBIDA)(H4abim)	7	3	8.7	1.947		1.3
IIc-7p9	Cu(CBIDA)(H4abim)	7	9	3.4	1.960		0.9
IIc-9p3	Cu(CBIDA)(H4abim)	9	3	3.0	1.938	1.763	0.4
IIc-9p7	Cu(CBIDA)(H4abim)	9	7	10.6	1.976		23.5
lld-3p7	Cu(H ₂ EDTA)(H4abim)	3	7	1.1	1.991		65.2
IId-3p9	Cu(H ₂ EDTA)(H4abim)	3	9	0.0	1.996	1.948	17.8
lld-7p3	Cu(H ₂ EDTA)(H4abim)	7	3	5.3	1.965		7.9
IId-9p3	Cu(H ₂ EDTA)(H4abim)	9	3	3.0	1.955	1.887	10.4
lld-9p7	Cu(H ₂ EDTA)(H4abim)	9	7	2.6	1.972		65.5
Illa-1p7	Cu(MIDA)(H5abim)	1	7	0.0	1.975		2.0
Illa-1p9	Cu(MIDA)(H5abim)	1	9	0.6	1.978		0.9
Illa-7p1	Cu(MIDA)(H5abim)	7	1	1.5	1.942		2.0
Illa-7p9	Cu(MIDA)(H5abim)	7	9	1.2	1.966		0.7
Illa-9p1	Cu(MIDA)(H5abim)	9	1	3.1	1.947		1.6
Illa-9p7	Cu(MIDA)(H5abim)	9	7	0.5	1.964		0.2
IIIb-1p7	Cu(NBzIDA)(H5abim)	1	7	0.0	1.976		0.2
IIIb-1p9	Cu(NBzIDA)(H5abim)	1	9	0.3	1.978		0.4
IIIb-7p1	Cu(NBzIDA)(H5abim)	7	1	1.4	1.943		1.5
IIIb-7p9	Cu(NBzIDA)(H5abim)	7	9	1.4	1.968		0.5
IIIb-9p1	Cu(NBzIDA)(H5abim)	9	1	3.1	1.948		1.7
IIIb-9p7	Cu(NBzIDA)(H5abim)	9	7	0.7	1.965		1.2
IVa-1p3	Cu(MIDA)(H7deaA)	1	3	16.2	2.018	1.760	13.9
IVa-1p9	Cu(MIDA)(H7deaA)	1	9	2.8	2.001	1.754	20.7
IVa-3p1	Cu(MIDA)(H7deaA)	3	1	29.1	2.014		93.5
IVa-3p9	Cu(MIDA)(H7deaA)	3	9	0.0	1.975	1.810	0.5
IVa-9p1	Cu(MIDA)(H7deaA)	9	1	24.7	1.945		35.0
IVa-9p3	Cu(MIDA)(H7deaA)	9	3	3.3	1.933	1.770	1.9
IVb-1p3	Cu(NBzIDA)(H7deaA)	1	3	16.0	2.021	1.753	11.1
IVb-1p9	Cu(NBzIDA)(H7deaA)	1	9	2.3	1.999	1.757	21.6
IVb-3p1	Cu(NBzIDA)(H7deaA)	3	1	29.4	2.017		92.4
IVb-3p9	Cu(NBzIDA)(H7deaA)	3	9	0.0	1.977	1.805	0.8
IVb-9p1	Cu(NBzIDA)(H7deaA)	9	1	24.7	1.945		33.9
IVb-9p3	Cu(NBzIDA)(H7deaA)	9	3	3.4	1.934	1.766	0.6
Va-7,9p1	Cu ₂ (MIDA) ₂ (H5abim)	7,9	1	0.0	1.960	-	7.8
	/				1.903	-	0.0

Va-1,9p7	Cu ₂ (MIDA) ₂ (H5abim)	1,9	7	1.2	1.981	-	0.6
					1.970	-	0.6
Va 1 7p0	Cu (MDA) (HEabim)	17	0	1 2	1.989	-	4.3
va-1,7p9		1,7	9	1.5	2.006	-	44.0
Vb 7 0p1	Cu (NR-IDA) (H5abim)	70	1	0.0	1.962	-	2.3
vb-7,9p1		7,9	1	0.0	1.965	-	2.7
\/h 1 0n7	Cu (NR-IDA) (H5abim)	10	7	0.6	1.982	-	0.2
vu-1,907		1,9	· ·	0.0	1.971	-	1.3

^a. The latin numbers refer to the deaza-adenine ligand (i.e. I is 7-azaindole; II is 4-azabenzimidazole; III is 5-azabenzimidazole and IV is 7-deaza-adenine. V refers to the dinuclear possibility calculations with 5-benzimidazole.

The letters 'a', 'b', 'c' and 'd' refers to the chelating ligands used in the model systems: N-methyliminodiacetate(2-) (MIDA), N-benzyl-iminodiacetate(2-) (NBzIDA), N-(p-chloro-benzyl)-iminodiacetate(2-) (CBIDA) and ethylenediamino-tetraacetate(2-) (H₂EDTA), respectively.

Notation for the N atom coordinated to Cu and the N atom protonated, i.e. 9p3: coordination at N9 and protonation at the N3 of the deaza-adenine ligand.

^b. Nitrogen atom numbering, according to the conventional numbering of purines, to which the deazaadenine is coordinated to copper (see Scheme 1 for atom numbering).

^c. Protonated nitrogen atom numbering (see Scheme 1 for atom numbering).

S3. Optimized geometries and Total Calculated Gibbs Free Energies:

NOTE: The latin numbers refer to the deaza-adenine ligand (i.e. I is 7-azaindole; II is 4azabenzimidazole; III is 5-azabenzimidazole and IV is 7-deaza-adenine. Moreover, to possibilities are calculated per each nucleobase: gas phase and condering the solvent effect (s).

For the isolate ligands, the number after the letter 'p' refers to the location of the tautomerizable proton. For the metal complexes, the previous numbering criteria (see notes 'a' in Table S1) was followed.

B3LYP/6-31+G** Free Energy: -379.780081

I PJ

С	-2.518328153732	3.790914847370	-0.117126046073
С	-2.554447719147	2.406933038921	-0.130176927022
Ν	-1.397938200119	1.691819126442	-0.124746351335
С	-0.178036042900	2.298148152621	-0.106555192832
С	-0.101434301317	3.755654904795	-0.092411483245
С	-1.285479768576	4.479849602507	-0.098044138109
С	1.300733631533	4.005608702381	-0.075596414359
С	1.893281508177	2.748042449857	-0.080976773878
Ν	0.998296058238	1.692439853511	-0.099917156970
Н	-3.473281221013	1.834764746110	-0.144936301698
Н	2.956123776037	2.535142283984	-0.071916461629
Н	-1.280115826688	5.566583789652	-0.088034532486
Н	-3.455259292544	4.335639287966	-0.121842622722
Н	1.800275871840	4.964275828987	-0.061640468044
Н	-1.415848328736	0.677947458487	-0.134218536985

PCM-B3LYP/6-31+G** Free Energy: -379.792695

ls-p3

С	-2.516847843964	3.793326533056	-0.117088356659
С	-2.552444048767	2.406725033732	-0.130158328590
Ν	-1.400903101082	1.690363635779	-0.124790925549
С	-0.180875129901	2.295566602548	-0.106608559898
С	-0.102851059709	3.745357706433	-0.092520247334
С	-1.286004148773	4.477644632294	-0.098069255220
С	1.300750200733	4.004714388171	-0.075604115760
С	1.901139191576	2.751810798588	-0.080861009682
Ν	1.007414536314	1.692411133638	-0.099823501000
Н	-3.470710702059	1.834769085215	-0.144910093651
Н	2.965788727594	2.545262607441	-0.071723877758
Н	-1.274303118743	5.564045745530	-0.087996646620
Н	-3.453490816233	4.337758323192	-0.121804419350
Н	1.792191832070	4.968046681651	-0.061688999315
Н	-1.440312527487	0.675961166419	-0.134491071002

I-p9

С	-2.501384806912	3.801489779703	-0.116842283739
С	-2.513658439652	2.392176896337	-0.129900137375
Ν	-1.412756438781	1.631587658997	-0.125474024246
С	-0.268296640146	2.313754585666	-0.107359649019
С	-0.110955925982	3.731071996772	-0.092725848946
С	-1.290362455573	4.489669952381	-0.097983079235
С	1.301506580372	3.992576298081	-0.075695359307
С	1.931839537302	2.772143683316	-0.080363367748
Ν	0.991019101298	1.757877039128	-0.099414774758
Н	1.175291164687	0.766462342142	-0.106604132164
Н	-3.460888546059	1.858209954693	-0.144612120632
Н	2.986952551716	2.539567841650	-0.071567900348
Н	-1.264000508611	5.575887493207	-0.087743685554
Н	-3.444229801236	4.338925104465	-0.121678228937
Н	1.789968887183	4.956633071875	-0.061789877422

PCM-B3LYP/6-31+G** Free Energy: -379.808126

ls-p9

С	-2.503753762552	3.803058404798	-0.116853107556
С	-2.518528100731	2.394690302381	-0.129926413670
Ν	-1.416269565983	1.630113279264	-0.125522029248
С	-0.265696959842	2.308488327966	-0.107380061147
С	-0.112032857002	3.728509797884	-0.092761304849
С	-1.290172881296	4.489219714383	-0.097986881159
С	1.299983230769	3.992900743147	-0.075709360453
С	1.931657157075	2.771810300912	-0.080368034897
Ν	0.993347372405	1.756052735736	-0.099405774587
Н	1.194928534423	0.766517553766	-0.106397460603
Н	-3.467598529699	1.864283578403	-0.144623998133
Н	2.986150957323	2.536860456444	-0.071600577977
Н	-1.261617879928	5.575162997616	-0.087728638904
Н	-3.445679315734	4.341696120062	-0.121669092189
Н	1.785326861045	4.958669385738	-0.061821734062

II-p3

С	-2.501226874936	3.850042792012	-0.116405510657
С	-2.574528427526	2.468694503455	-0.129796265812
Ν	-1.437934481983	1.715753960770	-0.124941044291
С	-0.213536429681	2.303240149256	-0.106890148154
С	-0.103843137655	3.745873553274	-0.092566021152
С	-1.253664141683	4.516168040397	-0.097429386980
Ν	1.232425237160	4.045507517824	-0.075970299713
С	1.802309165984	2.836417354457	-0.081102141703
Ν	0.985153037142	1.729874581125	-0.099698796587
Н	-3.509436378666	1.923480227778	-0.144430685742
Н	-1.203847984251	5.600705824047	-0.087009893718
Н	2.879541928284	2.717347101285	-0.070990742104
Н	-3.425630203142	4.415683003248	-0.120771647909
Н	-1.488698898729	0.702846467906	-0.134733422424

PCM-B3LYP/6-31+G** Free Energy: -395.859562

lls-p3

С	-2.501509286509	3.852918165051	-0.116388266750
С	-2.571230740733	2.468071329272	-0.129775248959
Ν	-1.438690221249	1.718329798693	-0.124908514892
С	-0.216704232455	2.306628213933	-0.106875194239
С	-0.107485389975	3.739352750355	-0.092647278865
С	-1.258240363141	4.515599513395	-0.097463342460
Ν	1.234486088184	4.043151541241	-0.075968681596
С	1.810253315079	2.833611978129	-0.081056173563
Ν	0.994694822496	1.733599581452	-0.099560004008
Н	-3.504285736331	1.921042208898	-0.144433423499
Н	-1.211199530395	5.600316903988	-0.087059522548
Н	2.888410533876	2.717706051569	-0.070937387693
Н	-3.426513281897	4.416561502053	-0.120801212463
Н	-1.504903566383	0.704745538863	-0.134861754461

ll-p7

С	-2.501028488815	3.870691975586	-0.116215163223
С	-2.513205260167	2.460053498839	-0.129242198708
Ν	-1.422623934151	1.689638217377	-0.125019573102
С	-0.257409275801	2.346090445645	-0.106960221002
С	-0.149842001368	3.763440380086	-0.092877634732
С	-1.290615413775	4.561918127194	-0.097380668691
Ν	1.209384271624	4.012262018679	-0.076503930034
С	1.832311359171	2.780926953043	-0.081303849230
Ν	1.004071354526	1.768764708563	-0.099163376477
Н	-3.466263064080	1.935921283460	-0.143875157669
Н	-1.251270131002	5.647230978724	-0.087053142855
Н	2.911611511913	2.701437464338	-0.070812880336
Н	-3.441908719450	4.411351622051	-0.120988213967
Н	1.666191846965	4.911687988692	-0.063510931983

PCM-B3LYP/6-31+G** Free Energy: -395.868994

lls-p7

С	-2.500550719490	3.869620276740	-0.116220429092
С	-2.518443118981	2.460127316789	-0.129299647278
Ν	-1.425246643382	1.685748076636	-0.125077422294
С	-0.257742399053	2.344340936248	-0.106968555499
С	-0.148550645513	3.759868906123	-0.092887382030
С	-1.288637240216	4.559505400222	-0.097374670072
Ν	1.208578534738	4.006897466268	-0.076559216945
С	1.834077114974	2.789576882706	-0.081207388335
Ν	1.002909732325	1.767402959146	-0.099178372786
Н	-3.473333522260	1.940284326041	-0.143925449280
Н	-1.243693689779	5.643550090139	-0.086995572692
Н	2.912994039927	2.715274436617	-0.070686434405
Н	-3.440235160658	4.411468916898	-0.120976804333
Н	1.667277773669	4.907749671823	-0.063549596919

II-p9

С	-2.49623	3.86082	-0.11625
С	-2.53104	2.46740	-0.12939
Ν	-1.45238	1.64423	-0.12574
С	-0.29748	2.33329	-0.10746
С	-0.11628	3.71009	-0.09297
С	-1.26034	4.51434	-0.09745
Ν	1.22106	4.02459	-0.07625
С	1.84114	2.86294	-0.08048
Ν	0.96316	1.81357	-0.09916
Н	1.18529	0.83048	-0.10586
Н	-3.48844	1.95011	-0.14406
Н	-1.18125	5.59431	-0.08673
Н	2.91349	2.71869	-0.07073
Н	-3.41909	4.43136	-0.12060

PCM-B3LYP/6-31+G** Free Energy: -395.869303

lls-p9

С	-2.490121755364	3.864919405420	-0.116153777873
С	-2.541145374803	2.457746222289	-0.129560295168
Ν	-1.460366075983	1.659416258100	-0.125687189978
С	-0.302975585014	2.318876997086	-0.107667434407
С	-0.119729178468	3.724743274682	-0.092896256302
С	-1.262489390979	4.528811165419	-0.097373705514
Ν	1.234997960242	4.030406369241	-0.076058267192
С	1.837281391938	2.858829614616	-0.080541592965
Ν	0.973474265305	1.794772731245	-0.099242206110
Н	1.226785461585	0.815757355629	-0.105584479992
Н	-3.504390932945	1.954622629378	-0.144125892889
Н	-1.198571841693	5.612473297379	-0.086799962246
Н	2.908546958058	2.710602218268	-0.070785384979
Н	-3.419685904564	4.424242460740	-0.120653554374

III-p1

Ν	-2.427274394840	3.783931855724	-0.116244289130
С	-2.568217978760	2.416834186138	-0.130223200875
С	-1.466698487784	1.593728053243	-0.126352399699
С	-0.191937853560	2.198834790608	-0.107608521613
С	-0.085884720616	3.651384778533	-0.093208440651
С	-1.223217969123	4.424510730607	-0.097907855367
Ν	1.237514088977	3.995373686794	-0.076352000384
С	1.833450769092	2.797021640772	-0.081153799023
Ν	1.043562579724	1.678951742995	-0.099573328403
Н	-3.587265401331	2.052051415006	-0.144117909734
Н	2.914001499716	2.706542737461	-0.070791152481
Н	-1.588355253847	0.516402219143	-0.137477979738
Н	-1.235609368558	5.507902999168	-0.088115051643
Н	-3.266365174950	4.347054338459	-0.119777924967

PCM-B3LYP/6-31+G** Free Energy: -395.859672

IIIs-p1

Ν	-2.425195745606	3.782269348772	-0.116238474108
С	-2.568761213766	2.420959595670	-0.130190605865
С	-1.466377133602	1.596023718401	-0.126327083759
С	-0.194768741301	2.204123934236	-0.107588900024
С	-0.088869011757	3.645518589038	-0.093293547734
С	-1.230159620864	4.422219596951	-0.098001698162
Ν	1.241176192075	3.991232566771	-0.076352756745
С	1.842343657044	2.793379181438	-0.081095019873
Ν	1.053004230531	1.680761839588	-0.099458148350
Н	-3.587521947587	2.057730021905	-0.144067838423
Н	2.923799708592	2.705535482042	-0.070698843984
Н	-1.594373875159	0.519582136334	-0.137509491587
Н	-1.249614786556	5.504829376554	-0.088289955510
Н	-3.266979375912	4.346359787456	-0.119791489597

III-p7

Ν	-2.493768872664	3.815058424405	-0.116655857627
С	-2.552375143682	2.462819432232	-0.129639026081
С	-1.445972882570	1.617591290390	-0.125913589058
С	-0.188059042484	2.231545673470	-0.107263802320
С	-0.131944040825	3.644124056059	-0.093754198001
С	-1.300580848986	4.409427222294	-0.098855817110
Ν	1.222046523776	3.941499610168	-0.077006571760
С	1.886526712593	2.737663414078	-0.081141077688
Ν	1.091702329894	1.694973131353	-0.098917639701
Н	-3.555090082812	2.043603696038	-0.143862910023
Н	2.967878080433	2.692412713009	-0.070353526443
Н	-1.553006739599	0.538218339573	-0.136901072081
Н	-1.285285730780	5.497684735004	-0.088737339956
Н	1.645178411046	4.857136173340	-0.064243196199

PCM-B3LYP/6-31+G** Free Energy: -395.864878

IIIs-p7

Ν	-2.492732009374	3.815746587038	-0.116639793072
С	-2.554373828135	2.460596875076	-0.129679860229
С	-1.449027420421	1.614585880592	-0.125971638545
С	-0.189621638300	2.227712190987	-0.107314354430
С	-0.129891075691	3.641245879471	-0.093759791245
С	-1.295226238063	4.410217911210	-0.098794457106
Ν	1.220206665126	3.938183572353	-0.077056586758
С	1.886432628668	2.746243814277	-0.081062993075
Ν	1.090462519643	1.694112483677	-0.098937005651
Н	-3.556217635681	2.039531827329	-0.143911402907
Н	2.967371404633	2.707316537247	-0.070221669308
Н	-1.564296494853	0.535829876115	-0.137037847786
Н	-1.270672029776	5.496964412089	-0.088594848859
Н	1.644833816896	4.855470062781	-0.064263375044

III-p9

Ν	-2.471198626404	3.810371402047	-0.116449234726
С	-2.564127734780	2.461202196456	-0.129780137657
С	-1.481877582585	1.583219998713	-0.126620183227
С	-0.223330279039	2.188352785946	-0.108037637701
С	-0.095287695031	3.595476827276	-0.093811731500
С	-1.261802130146	4.371755660099	-0.098776897347
Ν	1.245024690426	3.965181905426	-0.076540047110
С	1.897974644913	2.833091404498	-0.080155898355
Ν	1.075912400337	1.721319572859	-0.098861710586
Н	1.375945020934	0.758085745681	-0.104586201752
Н	-3.575879381006	2.063726693547	-0.143902727979
Н	2.975495213127	2.734066742891	-0.069903411061
Н	-1.627958109089	0.507780049097	-0.137992329865
Н	-1.210140404802	5.457889039686	-0.088284504627

PCM-B3LYP/6-31+G** Free Energy: -395.865750

IIIs-p9

Ν	-2.473442396576	3.811456418617	-0.116462850331
С	-2.563966165758	2.458091109564	-0.129807024569
С	-1.479208086223	1.584991893359	-0.126576019889
С	-0.221806860716	2.192597157258	-0.107982797494
С	-0.096319737643	3.601177441122	-0.093770166109
С	-1.261978910432	4.376521287333	-0.098735246252
Ν	1.245536563010	3.967393984398	-0.076514531620
С	1.896206790500	2.825541918132	-0.080243436882
Ν	1.072948264814	1.725795219070	-0.098851350647
Н	1.373561481626	0.760499980227	-0.104588471469
Н	-3.573365788151	2.055751314601	-0.143949841976
Н	2.972439137353	2.719009636954	-0.070073316175
Н	-1.618121920785	0.509566255701	-0.137873528913
Н	-1.213732343135	5.463126408010	-0.088274066163

IV-p1

Ν	1.863670709684	-0.489733264458	-0.011711185635
С	1.253119212892	-1.738018883086	0.002907532809
Ν	-0.027834253224	-1.919622117798	0.010600520953
С	-0.797163352939	-0.788230586914	0.011885376413
С	-0.227725263419	0.559607353840	0.000078903987
С	1.146822172972	0.680243950324	-0.019221974572
С	-1.349812916426	1.434256673527	-0.014899071666
С	-2.447120441119	0.579065466090	-0.006207357741
Ν	-2.125647175454	-0.758037213892	0.005550228629
Н	1.938565281008	-2.579716417610	0.004875919434
Ν	1.859531981796	1.860702483124	0.016529552967
Н	-3.489966110514	0.875526146448	-0.008141837478
Н	1.303053055153	2.692209679640	-0.126255655632
Н	2.744272775362	1.890478382296	-0.474124992469
Н	-1.366269115358	2.516393767091	-0.018647266971
Н	2.872407439334	-0.451942418435	0.052731417014

PCM-B3LYP/6-31+G** Free Energy: -451.207461

IVs-p1

Ν	1.857988286068	-0.487881282078	-0.029472099498
С	1.257871699337	-1.731283354872	0.004549912134
Ν	-0.027091355142	-1.920540841192	0.026121246021
С	-0.793490679972	-0.782609899227	0.015305931051
С	-0.239972609902	0.551145837431	-0.018271156973
С	1.149154030680	0.684330708158	-0.044705572633
С	-1.361460258213	1.427955133296	-0.022060056000
С	-2.462815078617	0.577976336882	0.009210275682
Ν	-2.133956298186	-0.760560360464	0.031222395801
Н	1.947574863786	-2.567592161516	0.011191769049
Ν	1.828388943592	1.852651495056	-0.047056664967
Н	-3.505618851930	0.875989010411	0.017338911135
Н	1.315158422391	2.708125514248	-0.199629763255
Н	2.817219686672	1.883928847870	-0.251833714436
Н	-1.369969585910	2.509777545782	-0.041968466347
Н	2.870922785342	-0.458229529783	-0.033992836760

IV-p3

Ν	1.917742833090	-0.488865240623	-0.056817670817
С	1.334433057278	-1.664438663357	-0.022554809593
N	-0.004479220018	-1.849623198091	0.008514883781
С	-0.839833301447	-0.755891112698	0.006164105994
С	-0.257107787777	0.554990181641	-0.027262490656
С	1.140603454984	0.637375548044	-0.059464596798
С	-1.387960837358	1.425567070733	-0.019730345368
С	-2.489351321868	0.576796256863	0.016105179396
Ν	-2.162183194936	-0.767126304428	0.032243769849
Н	1.948791279568	-2.559017379163	-0.020063304462
Ν	1.823637474313	1.812587439045	-0.073712978963
Н	-3.532694196537	0.868220270212	0.032912597603
Н	1.339258775419	2.682912719845	-0.219756016243
Н	2.822235663255	1.782214970143	-0.211208927869
Н	-1.401852500106	2.507077499246	-0.032109935220
Н	-0.406458673833	-2.779638720528	0.032707001999

PCM-B3LYP/6-31+G** Free Energy: -451.213864

IVs-p3

Ν	1.918365080733	-0.493587095941	-0.077818864241
С	1.331315789588	-1.670736276594	-0.028360192577
Ν	-0.003669959181	-1.855546512535	0.015703835633
С	-0.836724141871	-0.759827800380	0.009747928575
С	-0.259281363528	0.545358217239	-0.043018739860
С	1.144404565224	0.636486147047	-0.086287207614
С	-1.385544801021	1.424988126951	-0.034389758468
С	-2.491568829082	0.584986975758	0.021010054086
Ν	-2.167139719207	-0.762779930700	0.048654620555
Н	1.941700870292	-2.566848160705	-0.021428779714
Ν	1.812971705948	1.807460642590	-0.138090863250
Н	-3.533580396303	0.882927608281	0.043296689384
Н	1.329303489663	2.691433606547	-0.145760439559
Н	2.821677038277	1.805278868898	-0.165804448447
Н	-1.387975833148	2.506332135508	-0.064043755355
Н	-0.389471992391	-2.792785214946	0.052556383909

IV-p9

N	1 910555389330	-0 474539317187	-0 041385054618
	1.010000000000	4 00000570000	-0.041000004010
C	1.290741774522	-1.668696573902	-0.015185309809
Ν	-0.018836450814	-1.913761098820	0.002039953395
С	-0.749642116664	-0.788920899726	-0.003136504932
С	-0.254683241423	0.533915230044	-0.020976877294
С	1.155732499855	0.634532934450	-0.043025948991
С	-1.389281439548	1.415439121845	-0.010974984764
С	-2.505175648069	0.615021724154	0.009544221817
Ν	-2.118520808365	-0.716491455963	0.013252059451
Н	1.945195827941	-2.536638258409	-0.010650480088
Ν	1.810835860257	1.836973628301	-0.027530723762
Н	-3.551008098467	0.884233945398	0.025069185510
Н	1.317383301690	2.673847859783	-0.296208926534
Н	2.801876387652	1.806392271794	-0.218563125412
Н	-1.395258476821	2.496273942346	-0.009150720537
Н	-2.728285667035	-1.519736169174	0.032840422043
Н	-2.728285667035	-1.519736169174	0.032840422043

PCM-B3LYP/6-31+G** Free Energy: -451.227360

IVs-p9

1.915095071828	-0.481397881309	-0.042807940846
1.293373811921	-1.674986748002	-0.015671478115
-0.016576435808	-1.920380013533	0.006191136217
-0.753352662775	-0.792745849180	0.001681215228
-0.252158900429	0.528555085094	-0.021000054669
1.158897203693	0.635063450954	-0.045552450086
-1.382677510334	1.414895640525	-0.015541282631
-2.500849191552	0.616209714269	0.008623676021
-2.118924911794	-0.716287886654	0.018632205485
1.947430574861	-2.543887560144	-0.014041348402
1.806106602499	1.833590810902	-0.034440170579
-3.547021577869	0.883888962915	0.019920260882
1.302068134038	2.678141682578	-0.259721832782
2.796995306079	1.830495165291	-0.231847634066
-1.381688414774	2.495547249359	-0.025634447193
-2.745088005520	-1.508854938019	0.037167331524
	1.915095071828 1.293373811921 -0.016576435808 -0.753352662775 -0.252158900429 1.158897203693 -1.382677510334 -2.500849191552 -2.118924911794 1.947430574861 1.806106602499 -3.547021577869 1.302068134038 2.796995306079 -1.381688414774 -2.745088005520	1.915095071828-0.4813978813091.293373811921-1.674986748002-0.016576435808-1.920380013533-0.753352662775-0.792745849180-0.2521589004290.5285550850941.1588972036930.635063450954-1.3826775103341.414895640525-2.5008491915520.616209714269-2.118924911794-0.7162878866541.947430574861-2.5438875601441.8061066024991.833590810902-3.5470215778690.8838889629151.3020681340382.6781416825782.7969953060791.830495165291-1.3816884147742.495547249359-2.745088005520-1.508854938019

la-3p9

Cu	-0.606744259690	-0.138854346417	-0.152092447739
0	-0.292242224217	1.743695244542	-0.225329307155
0	-1.316332376480	3.744774304277	-0.302873832616
0	-1.315456224357	-1.888538789923	-0.234582429204
0	-3.244705531539	-3.037174561955	-0.382398020679
Ν	-2.500001361334	0.408320862055	0.238733449872
С	3.957082026217	-1.693642521441	0.136844672004
Ν	2.352769242148	1.464847699399	-0.078582914761
С	4.518970378956	0.860387274667	0.056124387274
С	1.565357032854	-2.030833759097	0.027625705290
Н	0.693313307375	-2.677924158514	0.002367688286
С	2.857902987283	-2.544091521689	0.115616859871
Н	2.986657172246	-3.621650224369	0.164475988316
С	3.722467820582	-0.321339575948	0.067508585164
С	2.364763170269	0.106450212816	-0.019900567743
Ν	1.293828929612	-0.709659538682	-0.035882816825
С	3.651641900513	1.916744244654	-0.034186064043
Н	3.849570406658	2.980060220099	-0.072229655547
С	-2.676811803036	1.770023103362	-0.283087698455
Н	-3.446723477968	2.327448870623	0.267526159704
Н	-3.006504468341	1.700999683004	-1.327092681874
С	-1.342411896332	2.530502454840	-0.257158751894
С	-3.359462250293	-0.649108659543	-0.315422442922
Н	-3.587717513670	-0.397091686243	-1.358364234422
Н	-4.314923337917	-0.725960022737	0.221178493772
С	-2.617423107455	-1.998075475001	-0.300143741751
С	-2.512078242571	0.391491660110	1.707149628704
Н	-2.254857349881	-0.612362254981	2.060424421903
Н	-3.503740102722	0.665596807585	2.097061229399
Н	-1.771581775369	1.103651815334	2.086388628574
Н	4.969370579309	-2.089186346705	0.204021429832
Н	1.485768321469	2.007900273522	-0.152029421763
н	5.598195027512	0.921497712048	0.107344701633

la-9p3

0	0.000704000044	0.40450000507	0 000005404050
Cu	0.692794820011	-0.194562228567	-0.082285131858
0	1.589942887677	-1.860048217530	-0.141469212447
0	3.638994302098	-2.757156147032	-0.402116253839
0	0.129442666587	1.648597188823	-0.130527837464
0	0.900418527776	3.753450958611	-0.337241851984
Ν	2.509855198171	0.589825084741	0.188941305728
С	-4.671725134883	-0.631852799341	0.049640957371
Ν	-1.101140970253	-0.911010846667	0.014555632902
С	-2.796994471003	-2.463163901436	0.087066222628
С	-3.716788719160	1.587259811650	-0.047872696534
Н	-3.777310917799	2.668915774258	-0.090420336727
С	-4.825065006435	0.758325943246	-0.000572892299
Н	-5.813017912637	1.207855786769	-0.004628605347
С	-3.391277497333	-1.173947700124	0.051587990583
С	-2.278986591639	-0.268154801786	0.003781656424
Ν	-2.470936958820	1.068411860597	-0.044058573436
С	-1.437427161674	-2.253848227112	0.058946480946
Н	-0.630258773994	-2.978033271251	0.065682508810
С	3.451931661301	-0.374272699681	-0.402647317059
Н	4.445258185096	-0.316962586217	0.063065813911
Н	3.572197176088	-0.130018789297	-1.465452038150
С	2.885599646185	-1.806316227116	-0.299385115557
С	2.482951899091	1.949458175529	-0.367639403136
Н	2.745781273949	1.893302967617	-1.431359447280
Н	3.216492693433	2.609485670123	0.115456553928
С	1.072639087997	2.552348309019	-0.261521269696
С	2.620039136385	0.612540802729	1.653008816738
Н	1.822628394631	1.237182323191	2.069232471966
Н	3.593348023225	1.016395092496	1.969755740737
Н	2.512601513977	-0.405942770592	2.039616060621
Н	-5.550723348302	-1.273569839962	0.085079732222
Н	-1.615947173155	1.658002577939	-0.084224013599
н	-3.303618456361	-3.418929273654	0.126259051185

lb-3p9

Cu

D-3	09		6	
_	0.040500530003	0.0500.000005	0 50300 / 35050 /	
Ju	0.613582570087	0.358242626205	0.507034756501	
0	0.663149391302	-1.543624477315	0.734574481834	
0	-0.603939579536	-3.325159312766	1.267241923617	
0	0.178900688017	2.202627800045	0.440612789325	
U N		3.031973783807	0.757513093042	
	-1.300008320107	0.1090/4891008	0.771708774907	
	0.129101410012 2.176521570750	1.083239243070	-1.051740014621	
	5.170521579750	1 519055609205	-0.122419920008	
C	0.000922900420 0.000071946547	-1.01090000290	-0.042400013139	
	2.92397 1040347	1.033927719040	-0.403520463039	
	2.191909027090	2.020004097171	-0.245609271575	
С Ц	4.212991210000	2.109940200204	1 04004030030	
	4.400000120007	0.000739935469	-1.049904030030	
Ĉ	3 379127904900	-0.220730033400	-0.785095795585	
N	2 483000000586	0.401400749409	0 13/369967053	
C	2.403000990300	2 401097060055	0 434192676539	
ц	4.330377430003	-2.401907909900	0.335205070072	
\hat{C}	1 537828126162	1 127303117740	1 538077486244	
ц	2 53/61/76371/	1 567100611566	1.000077400244	
н	-2.334014703714	-1.307 199011300	2 603/16163715	
\hat{c}	-0.438104506243	-0.005054001104	1 152678020164	
ĉ	-1 847830606124	1 357888/35508	1 371082512170	
й	-1 672906065005	1 301337384113	2 454119876857	
н	-2 924261607088	1 507292058952	1 220759254359	
Ċ	-1 033241605617	2 534531085896	0.808026696694	
č	-1 781914316197	-0.039605738987	-0 656700424427	
й	-1 429571976053	0.864016295509	-1 171552932598	
н	-1 212776094700	-0.891140510466	-1 053730861429	
н	6 137726532592	1 293190020723	-1 404478266631	
н	2 286609120896	-2 110213112939	0 219209578296	
H	6.308381600005	-1.768460881523	-1.148835314040	
C	-3.252429689092	-0.236905878044	-0.863857880376	
Č	-4.100641443258	0.864115147866	-1.025273176663	
Č	-3.800946008996	-1.523817303354	-0.881280905782	
Č	-5.470430621268	0.682351945885	-1.190127604132	
C	-5.170605353178	-1.706764128623	-1.046179390268	
C	-6.006991371256	-0.603263929753	-1.198720863691	
H	-3.677500375053	1.870116882541	-1.027577210546	
Н	-3.142856020757	-2.387828852118	-0.771963955316	
Н	-6.119076333432	1.546797088292	-1.317796590409	
Н	-5.584220450018	-2.713249944985	-1.061418106737	
Н	-7.077819402771	-0.745717722912	-1.331609495398	

lb-9p3

Cu	-0.546038328909	0.511141717559	0.436485340249
0	0.013944036334	2.321919313517	0.312797379414
0	1.822581886914	3.630002991609	0.619651626235
0	-0.753556193775	-1.393500254795	0.689614186828
0	0.369783498932	-3.249121768413	1.294226232543
Ν	1.386671384440	0.116610490537	0.739048545768
С	-5.695399381216	-0.264924442222	-0.930333122181
Ν	-2.363378959206	0.799189969815	-0.161945791204
С	-4.246298200736	1.918420150232	-0.862745740226
С	-4.395838994714	-2.190995757395	-0.260744727222
Н	-4.260906261183	-3.247022736098	-0.055655831481
С	-5.592805694574	-1.639083690444	-0.685425832378
Н	-6.448243516988	-2.292760623155	-0.823689189635
С	-4.579760663385	0.543277181363	-0.741766286283
С	-3.365153076839	-0.082243720610	-0.301633942221
Ν	-3.308323407571	-1.413349402591	-0.077048466950
С	-2.921463646082	2.019212914341	-0.505229225068
Н	-2.285361734945	2.896539077705	-0.463513620645
С	1.941235706169	1.342839506828	1.328873793159
Н	3.031092088580	1.408449505919	1.220810840813
Н	1.716425713671	1.328423226646	2.403324584030
С	1.239821797997	2.562583573843	0.698536994249
С	1.454659318399	-1.115707367482	1.532007614317
Н	1.337476642296	-0.844832745065	2.589254344146
Н	2.418714473860	-1.630681896531	1.432674927161
С	0.293643636004	-2.044239212898	1.145085502971
С	1.835980397607	-0.089672830247	-0.673297730527
Н	1.231027138904	-0.917562025722	-1.067342743181
Н	1.547718664483	0.819279496888	-1.217633249624
Н	-6.642118087142	0.157328834195	-1.263746709055
Н	-2.394257235958	-1.790608595287	0.243672494747
Н	-4.896033981658	2.726919218691	-1.172415907292
С	3.298793538626	-0.369791120479	-0.835263369666
С	4.207578303118	0.683305287369	-0.988021688939
С	3.779606099561	-1.683388437693	-0.818540616753
С	5.569818346846	0.428017187811	-1.111584749427
С	5.141898717143	-1.939810720746	-0.942446563301
С	6.038629701395	-0.883720997488	-1.087354425438
Н	3.837439145359	1.709716523094	-1.013663905732
Н	3.074295980805	-2.510213688842	-0.715906432748
Н	6.266005086786	1.255690939355	-1.232584519117
Н	5.502712432791	-2.966554753277	-0.931611993901
н	7,103822627957	-1.083603319415	-1,188133026747

Cu	-0.593974760411	-0.153635740528	-0.124877663996
0	-1.328470060991	-1.788244238491	0.477973094699
0	-3.285142609495	-2.885279511888	0.662738941340
0	-0.208657014197	1.678379703048	-0.386422234882
0	-1.196369769771	3.638160928567	-0.888195928152
Ν	-2.407877043499	0.252712293314	-0.843543727180
С	3.795972697475	-2.069705677611	0.209666131017
Ν	0.779837790914	-2.341439741709	-1.741888038308
Ν	2.719242556195	-3.476301600396	-1.635610180579
Н	3.408413767008	-4.180579057432	-1.857041691873
С	2.224032977923	-0.334264765127	0.845388136859
Н	1.968035678038	0.540652028860	1.438156187132
С	3.469278747673	-0.957350408640	0.979520815204
Н	4.180662383519	-0.561704401494	1.698440751260
С	2.821298478371	-2.484397349786	-0.686836477573
С	1.588082261992	-1.805692012362	-0.774314085671
Ν	1.282703431045	-0.750135025928	-0.008468294129
С	1.487801162245	-3.332655735550	-2.223085802720
Н	1.164223805186	-3.998563016144	-3.014136969638
С	-3.339235072140	-0.628374575748	-0.120439297273
Н	-4.214755205807	-0.886022679301	-0.732072970535
Н	-3.703836258383	-0.091212039752	0.763779380996
С	-2.622800652590	-1.904528586242	0.369886870323
С	-2.588610708794	1.707096450673	-0.705953988570
Н	-3.086671092762	1.903210679303	0.251331673216
Н	-3.231653768094	2.115491632779	-1.497407458352
С	-1.228950398487	2.437352695334	-0.683304922367
С	-2.270108456976	-0.150928872569	-2.248374943158
Н	-1.494848395700	0.456991301657	-2.726993245877
Н	-3.218248554381	-0.014361642236	-2.791091242304
Н	-1.970255113328	-1.203243262456	-2.296510136286
Н	4.758306198225	-2.567287772117	0.308205317340

lla-3p9

Cu	-0.606641032327	-0.138823523783	-0.154042158486
0	-0.284079260120	1.744567800257	-0.187437088768
0	-1.311299944761	3.742582996656	-0.286911793022
0	-1.294470828352	-1.892751695321	-0.258084622920
0	-3.215101991423	-3.046706182712	-0.466053910925
Ν	-2.504147752435	0.398985429044	0.197366299231
С	4.000131727454	-1.600142666372	0.101992289075
Ν	2.353132359400	1.506568114133	-0.041858422572
Ν	4.515854885587	0.872027284436	0.078880136976
С	1.611043462570	-2.005590416646	-0.011226929386
Н	0.758669718692	-2.678532194386	-0.047850633028
С	2.919992215875	-2.478666092873	0.063567306700
Н	3.079651195253	-3.552889698400	0.088703571713
С	3.705466102129	-0.241872194162	0.061910560882
С	2.344962111909	0.142869217903	-0.014190898976
Ν	1.294546523974	-0.691414888452	-0.046224011935
С	3.671903015545	1.873885906148	0.014848487405
Н	3.956212564352	2.919796212129	0.005307416799
С	-2.667576108851	1.764507241014	-0.320447307319
Н	-3.455032732874	2.316657239312	0.210068367237
Н	-2.965238554311	1.702267452444	-1.374439725603
С	-1.336509996952	2.528369930054	-0.248428833967
С	-3.341668939148	-0.659187941278	-0.389777167173
Н	-3.539383341122	-0.401198486324	-1.437496804144
Н	-4.312355635075	-0.743904745986	0.117176176004
С	-2.594585098295	-2.006126875851	-0.360725952237
С	-2.559419040076	0.371673458989	1.664859744990
Н	-2.310749566324	-0.634150491053	2.018545816706
Н	-3.562734752350	0.640958261196	2.026880551625
Н	-1.832196384829	1.082692632079	2.070873705227
Н	5.027834953411	-1.951841098157	0.158927851294
Н	1.496768122891	2.072021015498	-0.103168021800

lla-7p3

Cu	-0.721622180281	-0.158707841578	-0.029679503268
0	-0.309800388760	1.700028866199	-0.121321397401
0	-1.270723145426	3.723363567246	-0.338268160483
0	-1.465264329068	-1.905359532586	-0.039001849153
0	-3.432106685490	-2.991298477244	-0.198012075369
Ν	-2.592182731892	0.454440749202	0.303776321186
Ν	4.626203806546	-0.723817798591	-0.065194412624
Ν	1.121797191063	-0.784146193157	0.013244529598
Ν	2.826404345104	-2.332172235505	0.032344406295
С	4.005250519999	1.568140421801	-0.144399011448
Н	4.322933936222	2.604763471055	-0.194101351157
С	4.975940694555	0.586465965518	-0.124997778882
Н	6.039414054529	0.794126881246	-0.156022864855
С	3.324031447148	-1.093762000154	-0.023999264758
С	2.307029665428	-0.094754597124	-0.041722034354
С	2.637567248145	1.248084890916	-0.102232237752
Н	1.858550967500	2.009101974855	-0.119750238650
С	1.502216053259	-2.078924506103	0.048116772728
Н	0.753530481018	-2.863756732123	0.085476095502
С	-2.695569183943	1.800131719585	-0.278762104017
Н	-3.462634039759	2.408300341425	0.220284524271
Н	-2.991650650124	1.698498941541	-1.330299805740
С	-1.328575043589	2.510832956331	-0.233883407179
С	-3.463644048180	-0.600663023177	-0.235222818322
Н	-3.648902065806	-0.385371979208	-1.294976838125
Н	-4.438855519092	-0.627306411755	0.270175608660
С	-2.765886080788	-1.973515904391	-0.139591931564
С	-2.648967679187	0.498697517376	1.769286042713
Н	-2.436085666718	-0.497524727991	2.170549675409
Н	-3.642380866952	0.820677037719	2.116699468917
Н	-1.896076007693	1.201708671674	2.140840944874
н	5.334364902130	-1.450560012815	-0.051908305276

lla-7p9

_			
Cu	-0.710716118248	-0.106419462103	-0.042414145593
0	-0.337106631131	1.748084159832	-0.153305886586
0	-1.348420861616	3.742894508355	-0.406479473617
0	-1.398970433020	-1.876993435084	-0.026605364393
0	-3.329879736361	-3.024159292545	-0.182762288276
Ν	-2.595997692349	0.454038711417	0.275086236667
Ν	4.707240282895	-0.749602638324	0.000373505261
Ν	1.145418033195	-0.731375947448	0.015262673530
Ν	2.785163180634	-2.227204064971	0.049386095164
Н	3.254934552777	-3.121681202830	0.071256910992
С	4.041475760603	1.586890276713	-0.071174245708
Н	4.380905674628	2.619033523783	-0.106313616229
С	4.995065920226	0.556745403487	-0.041179949097
Н	6.057073292960	0.800615175093	-0.051952486656
С	3.404825291776	-0.988948347915	0.011384858082
С	2.355426637200	-0.052855390818	-0.013871367350
С	2.680782601761	1.301670564597	-0.057486909656
Н	1.904532831466	2.063536170620	-0.084306969560
С	1.448818758044	-2.018905962005	0.046879850249
Н	0.700778237194	-2.802930005234	0.065750509560
С	-2.726310749751	1.787493188820	-0.332163532349
Н	-3.512144765914	2.384616694397	0.150064568773
Н	-3.009701680233	1.660813382263	-1.384401642091
С	-1.376169404149	2.531961126334	-0.285901874106
С	-3.432778131074	-0.634035095191	-0.254328881424
Н	-3.617197128665	-0.439913584806	-1.318290730608
Н	-4.410356007386	-0.681661919039	0.244579210732
С	-2.698399040159	-1.984805282510	-0.134714107389
С	-2.667384482593	0.522048678874	1.739444891287
Н	-2.431713857312	-0.460790546443	2.160647689275
Н	-3.672328173232	0.822616731608	2.071680484407
н	-1.937750162246	1.251916881144	2.105214986606

lla-9p3

Cu	0.718303254458	-0.237592562264	-0.129073189326
0	1.577652145547	-1.917458870021	-0.193345348768
0	3.613244046842	-2.847721905509	-0.443297737795
0	0.172653735323	1.609962867431	-0.183388030208
0	0.972656576184	3.703808811794	-0.383178052020
Ν	2.542479929673	0.519725116690	0.139898854567
С	-4.636078327637	-0.614573729846	0.003603245301
Ν	-1.098140766427	-0.906837722704	-0.032953996554
Ν	-2.849600094581	-2.401339500120	0.040445229256
С	-3.694613421079	1.619046905239	-0.096666689730
Н	-3.770916196330	2.699578929482	-0.139943513282
С	-4.793017965069	0.778045856806	-0.047525930168
Н	-5.783600869499	1.221603943026	-0.050968704133
С	-3.346519732661	-1.124519787603	0.003702423031
С	-2.251465490936	-0.215433003870	-0.045132695580
Ν	-2.438713996978	1.118196906759	-0.093998514494
С	-1.542072072914	-2.211148446208	0.012725983310
Н	-0.813348024605	-3.015390396097	0.024422292688
С	3.466000565478	-0.462001972987	-0.453525049136
Н	4.461448712681	-0.420806438685	0.008906278198
Н	3.586476721530	-0.221736933935	-1.517207477901
С	2.875725515543	-1.884737186038	-0.346183975877
С	2.531113437847	1.878037125445	-0.421835000460
Н	2.787732234563	1.814244455257	-1.486649216102
Н	3.275927502775	2.529491571689	0.055228579635
С	1.129751324266	2.500657031353	-0.311536909941
С	2.660749045576	0.545787168403	1.603559188804
Н	1.874569314990	1.182850076069	2.022306161492
Н	3.641104975592	0.937364948670	1.913202631741
Н	2.542157049199	-0.469804674438	1.994504268104
Н	-5.499636995810	-1.275076519922	0.040549570957
Н	-1.583063133639	1.707934935867	-0.135919674414

lla-9p7

Cu	-0.720976257530	-0.306482953517	-0.632419827594
0	-1.431831742506	-1.973112869357	-0.083187655320
0	-2.866310273833	-2.825190706368	1.431025602208
0	-0.379892370509	1.452270140831	-1.263801161440
0	-0.717204997562	3.581910760530	-0.609530822064
Ν	-2.320021665389	0.497891017597	0.245650012662
С	4.312036670594	-0.018041007111	0.640879364943
Ν	1.175739595802	-0.867991448164	-0.872547932219
Ν	3.302946801278	-1.352541024624	-1.301023314098
Н	4.096520406794	-1.760217541043	-1.774474197104
С	2.470351209631	0.995716937883	1.859835527874
Н	2.126960147993	1.614930221082	2.687387082334
С	3.847401798406	0.773435917273	1.684428899539
Н	4.550178480113	1.226583043991	2.378363761505
С	3.324994464461	-0.540085889992	-0.185222252912
С	1.973675683048	-0.247694616290	0.069429489430
Ν	1.516475636935	0.497243375049	1.072687817248
С	1.999036946184	-1.511118254765	-1.664733333037
Н	1.704061948458	-2.109750864566	-2.516211357647
С	-2.601054862522	-0.445540368072	1.338914243969
Н	-3.630235683852	-0.351249150429	1.711867293002
Н	-1.921824503737	-0.213581351654	2.169805868383
С	-2.314231002857	-1.890966416149	0.876585832329
С	-1.834286860310	1.842275241139	0.595904211027
Н	-1.236376246496	1.759004641288	1.512222953751
Н	-2.659319803573	2.541234143014	0.791846825662
С	-0.912245540694	2.381809497801	-0.518491500148
С	-3.425241882000	0.555259180002	-0.714023108190
Н	-3.125046270879	1.154658235809	-1.579368130824
Н	-4.318205815619	1.006667526359	-0.255366849952
Н	-3.670467625283	-0.457862699975	-1.049186706083
Н	5.372535615436	-0.207700717568	0.491069362765

llc-3p7

Ν	3.189708640143	0.350690622802	-0.076209307445
Ν	4.172928380311	-2.689053168252	-1.467356819779
Ν	2.235019305687	-1.690924220096	-0.913098773052
С	5.588826805768	0.502914812569	-0.220299427881
Н	6.470785875046	1.111328023633	-0.043137311051
С	4.330874966465	1.023304962571	0.102529074674
С	3.291189941804	-0.872912709844	-0.610673492080
С	4.525521253309	-1.461020349520	-0.955370005575
С	5.715187942684	-0.774382125700	-0.758140820594
С	2.803902911803	-2.758845822994	-1.414535474380
Н	2.274183369472	-3.635692219814	-1.767196249453
Н	6.687605475046	-1.192181143083	-1.009441425626
Cu	1.353355316301	0.797803685135	0.511337584122
0	1.292453461857	-0.577437107578	1.821240901079
0	-0.170717596128	-1.677771841462	3.134522047901
0	1.159493558698	2.352454025626	-0.553212340190
0	-0.389320773661	3.830954457555	-1.252397523002
Ν	-0.626109740837	0.892287644854	0.743706130924
С	-0.886497376028	0.356982496569	2.086027128016
Н	-1.918327053433	0.004092807743	2.208259048683
Н	-0.730722739494	1.172155776376	2.804453522542
С	0.133083780624	-0.757794257241	2.392616981904
С	-1.003455878125	2.284209595396	0.469286827380
Н	-0.908878114105	2.848541438612	1.405707704949
Н	-2.045178184386	2.380469934949	0.137464036227
С	-0.029247499100	2.896140842840	-0.557757412937
С	-1.045616490066	-0.047585107129	-0.339995082221
Н	-0.659738972133	0.374862273555	-1.277606320354
Н	-0.503228662609	-0.985656081781	-0.160151383945
С	-2.522808834679	-0.282039518451	-0.427725954962
С	-3.328119616027	0.521906188368	-1.240802692500
С	-3.126466399170	-1.300000129648	0.318817947341
С	-4.703640418261	0.327545934306	-1.306376069753
С	-4.500023967930	-1.509170054535	0.266811160106
С	-5.276401985169	-0.688708452230	-0.546977092972
Н	-2.869341208353	1.309297987988	-1.840671654220
Н	-2.509495231529	-1.939975719177	0.951453364480
Н	-5.327241516075	0.951175639586	-1.941228671715
Н	-4.967285867194	-2.300833788999	0.846312209208
Н	4.230227405400	2.024505041980	0.514861986179
CI	-6.999757758032	-0.945678689521	-0.623582041435
н	4.794527492109	-3.407451685957	-1.810248308591

llc-3p9

Ν	-2.291861984708	-0.111706717967	-0.443736195928
Ν	-2.675458915605	-3.625067262728	-1.030894643757
Ν	-3.979829585360	-1.783243436821	-0.999659832116
Н	-4.789174091859	-1.151520778980	-1.050168140422
С	-0.098018278454	-1.093852334571	-0.179778224518
Н	0.950381122646	-0.914579665339	0.041113126195
С	-0.969611825940	-0.006224510505	-0.180641166101
С	-2.718660258060	-1.357200777923	-0.702706875694
С	-1.911302020521	-2.520110379301	-0.726158786699
С	-0.554939386653	-2.380710092106	-0.454060315492
С	-3.883705876936	-3.137998893201	-1.181645474176
Н	-4.759235243221	-3.726817589404	-1.429857681551
Н	0.111162205201	-3.240605923581	-0.457457553513
Cu	-3.437228919771	1.506687029807	-0.407705336911
0	-5.088743479498	0.620229958380	-0.808340844305
0	-7.268463286685	0.997472517406	-1.219519522746
0	-2.030709347230	2.706336635547	0.003746154089
0	-1.592314301879	4.893869217458	0.307565020331
Ν	-4.504829738244	3.170377832233	-0.731792403098
С	-5.906805542282	2.830315215048	-0.466689291295
Н	-6.609759053534	3.512736986144	-0.960840761477
Н	-6.076883327087	2.913449051512	0.614387652956
С	-6.162342311995	1.375550402340	-0.885146301625
С	-3.882029134828	4.207886284423	0.100494466845
Н	-4.278255942109	4.104784352015	1.118880214829
Н	-4.117870080331	5.223220935130	-0.242080233465
С	-2.362424091935	3.966437721389	0.139726228386
С	-4.230906331901	3.367830203077	-2.189334288072
Н	-3.138577225946	3.417846524729	-2.288648437502
Н	-4.567345809335	2.450042402710	-2.690108277861
С	-4.879927801748	4.574057745003	-2.794482096556
С	-4.227052963930	5.811470030128	-2.791620275981
С	-6.157774091026	4.489107409015	-3.356930841954
С	-4.833446908178	6.942274070219	-3.326693739051
С	-6.779818872364	5.609135499948	-3.896848712274
С	-6.108932248375	6.828991075894	-3.873783702751
Н	-3.224323526438	5.890630649033	-2.368926340908
Н	-6.673422094985	3.527778975403	-3.380023104693
Н	-4.323998237689	7.902021011615	-3.326885441666
Н	-7.771060938541	5.540627541964	-4.336619072363
Н	-0.627777289492	1.003767269976	0.028680460536
CI	-6.875492420947	8.238301817105	-4.551437913940

llc-7p3

Ν	6.203716699022	-0.253151362190	-1.117041967582
Ν	2.939420529503	0.616941265376	-0.181584051980
Ν	4.806845910811	1.712246168437	-0.964730811320
С	5.216896604512	-2.315548255062	-0.470434735522
Н	5.329860133516	-3.387143954702	-0.340779262743
С	6.298023325798	-1.595465262022	-0.938491236723
С	5.052883178306	0.405024474395	-0.840348432280
С	3.925930102698	-0.320852024852	-0.355048272959
С	3.995758940587	-1.690325939649	-0.166393554607
С	3.524987727694	1.775508211891	-0.552341173549
Н	2.964112481840	2.703923674614	-0.513750329825
Н	3.132515982282	-2.242688459449	0.202359171602
Cu	1.120411739707	0.444798017624	0.490379506735
0	1.170496968067	-1.444717777226	0.776458185990
0	-0.100979292401	-3.163568246235	1.482409819433
0	0.726811465323	2.300493164749	0.314197710528
0	-0.942675624041	3.785066504026	0.610600985126
Ν	-0.830151821478	0.255923633156	0.871272976541
С	-0.964051474464	-0.936109747130	1.716161169063
Н	-1.974460138509	-1.363990060089	1.688951378844
Н	-0.764366146531	-0.637165081581	2.753282694860
С	0.093350708037	-1.974510178210	1.296440520031
С	-1.247002341734	1.549850976096	1.425670018642
Н	-0.987316837021	1.555874014381	2.492249390116
Н	-2.329481678404	1.714607796606	1.350933475748
С	-0.458230113489	2.672215493262	0.722222559356
С	-1.347154626092	0.035145156603	-0.512716353634
Н	-1.014932929545	0.899047224598	-1.103489764764
Н	-0.822833761544	-0.850306308676	-0.896217822348
С	-2.831590574559	-0.139727719306	-0.609241011679
С	-3.670420342126	0.967547028477	-0.775148966577
С	-3.407132716620	-1.411075804197	-0.514900638488
С	-5.051242392655	0.817341625191	-0.838119952432
С	-4.785814670823	-1.580920190969	-0.576006565760
С	-5.595707897717	-0.459972093932	-0.736118025863
Н	-3.234934837744	1.964318734340	-0.860835816240
Н	-2.764270351687	-2.284824278101	-0.396829520275
Н	-5.701532150779	1.677889580866	-0.969788413458
Н	-5.231252670345	-2.569586877349	-0.505740485109
Н	7.254803196112	-2.041977792590	-1.183901613078
CI	-7.325333536094	-0.660418040847	-0.820092729631
н	6.994112232580	0.281901709676	-1.461822054241

llc-7p9

Ν	-1.390695949931	-1.720501398703	-0.497018516369
Ν	2.078047711760	-1.398788794743	0.243757801729
Ν	0.632829563418	-3.023411505378	-0.201563973158
Н	0.266523686666	-3.951060015390	-0.364580292904
С	-0.981008772800	0.655718732169	-0.191751871958
Н	-1.417194812690	1.651429501204	-0.189467711082
С	-1.804743384691	-0.448304781186	-0.463901599657
С	-0.097568598488	-1.847062679663	-0.241674438930
С	0.828989413471	-0.828375985145	0.044560972027
С	0.373883330092	0.488712315311	0.071561891300
С	1.913487376590	-2.702800237229	0.091355257195
Н	2.721833598290	-3.417611496967	0.190797003610
Н	1.052372440856	1.311546189015	0.286922233009
Cu	3.815713732760	-0.621697933108	0.710022665313
0	3.264720633670	1.195986881707	0.779745937076
0	4.068568489837	3.268395206061	1.140393140607
0	4.675495519558	-2.321901673152	0.714771221125
0	6.692424521660	-3.278005618492	1.016371060835
Ν	5.662087601988	0.112945136862	0.856752974873
С	5.517903665739	1.399987321787	1.548348425719
Н	6.368593604701	2.071179048771	1.375311725298
Н	5.473658030105	1.198980684423	2.626500318489
С	4.191272858793	2.056667238512	1.119151406414
С	6.455579626587	-0.939944306145	1.503391419013
Н	6.299436275591	-0.860368418599	2.586965459274
Н	7.532091482874	-0.831457896180	1.319920113945
С	5.944776491897	-2.316754629736	1.036641169937
С	6.000405447067	0.276745562474	-0.589683189646
Н	5.889315677534	-0.717285684980	-1.043021317312
Н	5.220842574915	0.923817241290	-1.013403618439
С	7.362933729309	0.838128699974	-0.857049883811
С	8.469260836654	-0.006777640715	-0.994714722682
С	7.555968157879	2.220180698779	-0.955103190497
С	9.741512819157	0.508484350815	-1.216145965219
С	8.820651336600	2.753696292068	-1.176207634770
С	9.904116747287	1.888520196559	-1.303045058639
Н	8.332292901480	-1.087568290071	-0.934275564055
Н	6.700349508918	2.890836667007	-0.862038698122
Н	10.599539141962	-0.149091013819	-1.326107889193
Н	8.968363009035	3.827319036935	-1.255257704526
Н	-2.864277075408	-0.296712582709	-0.668355907568
CI	11.493255114304	2.544718085410	-1.586070842118

llc-9p3

Ν	-1.301460784491	-0.036649823518	-0.204794608765
Ν	-2.220124469295	-3.398941931567	-0.857370229277
Ν	-3.267940993643	-1.350126838840	-0.761479399189
С	0.721733128060	-1.273513973605	-0.008831221919
Н	1.788629648941	-1.260265776977	0.190447383596
С	0.028567381523	-0.076132560007	0.035947032315
С	-1.962355067587	-1.175709162893	-0.490787467565
С	-1.297455643166	-2.433686828135	-0.548313259933
С	0.066677152279	-2.478087525049	-0.303225734965
С	-3.343267734419	-2.711319977499	-0.966594827407
Н	-4.303610318499	-3.155216522729	-1.209063910322
Н	0.611849470142	-3.418822801189	-0.337890035999
Cu	-4.684649931772	-0.028194747891	-0.800216254411
0	-6.093372327518	-1.213906520449	-1.249138248002
0	-8.300752526711	-1.221291727308	-1.702569604600
0	-3.512343850885	1.440880172147	-0.350384441375
0	-3.489281405847	3.671253869020	-0.044415051013
Ν	-6.011220963891	1.417518678837	-1.146664969407
С	-7.318077013814	0.802811398735	-0.873347607771
Н	-8.147888886735	1.346343182177	-1.341973971947
Н	-7.478837189384	0.827642178632	0.212256986191
С	-7.280269029613	-0.669703940311	-1.331182259344
С	-5.608672625102	2.569505637179	-0.332081144146
Н	-6.009625773396	2.425695636290	0.679470193974
Н	-6.012431005371	3.517481060779	-0.709987210668
С	-4.075961832521	2.623600533066	-0.237098250011
С	-5.783748612648	1.645336932203	-2.607573890359
Н	-4.727810173962	1.929177419646	-2.711899917611
Н	-5.912713453288	0.668038167184	-3.090883023598
С	-6.677836650685	2.672425115579	-3.230746857921
С	-6.297147083998	4.017462847583	-3.278304917043
С	-7.920276168126	2.305565828169	-3.759432150743
С	-7.134221476282	4.980921973054	-3.829930160651
С	-8.770614189235	3.255067722348	-4.314397975613
С	-8.367757802737	4.587741841335	-4.342029712319
Н	-5.324607500007	4.316224546232	-2.883575212299
Н	-8.225967917855	1.258350253378	-3.739692457639
Н	-6.835676522477	6.024969565000	-3.869573688402
Н	-9.734123315999	2.968496306595	-4.726929911104
Н	0.495310921214	0.876213644524	0.260611491658
Cl	-9.423160755768	5.785241978290	-5.039468483344
Н	-1.865311663481	0.836552989020	-0.178837674838

llc-9p7

Ν	-3.672363254200	-1.763796072512	-0.650765570751
Ν	-4.902384838401	1.515715213950	-0.577463071943
Ν	-2.981692722099	0.495967013083	-0.117601436309
С	-5.988726130226	-1.935804774260	-1.358419200921
Н	-6.785325434970	-2.597404058728	-1.688724856486
С	-4.722681398111	-2.471196258241	-1.063638224632
С	-3.902730640915	-0.462503408272	-0.517958861357
С	-5.128213096540	0.173324079596	-0.808561762072
С	-6.217827630457	-0.571065423391	-1.240496867733
С	-3.614523842502	1.651967159972	-0.174322038393
Н	-3.142077901106	2.602154004418	0.044695025616
Н	-7.181906168740	-0.124730767651	-1.474949999649
Cu	-1.139098732487	0.418818773431	0.591118284267
0	-0.889287584775	2.264037772762	0.163850296642
0	0.667027862322	3.891053545692	0.139969523612
0	-1.109803322239	-1.325187331059	1.314286960795
0	0.283426170915	-2.822193128495	2.259544972910
Ν	0.836374287578	0.412644222205	0.901513343445
С	1.223531503878	1.802190707926	1.174324459626
Н	2.277576267402	1.999868158611	0.941031015955
Н	1.092576855409	1.981452627883	2.248990982902
С	0.292720736740	2.764524192625	0.415779989835
С	1.070261880318	-0.582155168208	1.956177767023
Н	0.929314428038	-0.082433985710	2.922979704832
Н	2.092546870864	-0.980576948467	1.941490303182
С	0.022176036272	-1.707381982684	1.840441615919
С	1.285170611104	-0.058250426350	-0.443239670143
Н	0.771351887306	-1.013092635762	-0.619046435345
Н	0.893628248936	0.668769742385	-1.167731463632
С	2.767160639447	-0.215845100569	-0.595386592182
С	3.390643762598	-1.426869460924	-0.276276214041
С	3.557044462941	0.849106689907	-1.040686659651
С	4.768734498870	-1.574773646306	-0.386004425272
С	4.936599879926	0.720111140625	-1.157340559831
С	5.529665805357	-0.494576687307	-0.824669193054
Н	2.785999713127	-2.270887082554	0.058915010907
Н	3.083490088179	1.794856631890	-1.308596658577
Н	5.250975942328	-2.516901498566	-0.139876354469
Н	5.548240418536	1.547618069113	-1.506496155754
Н	-4.553242546008	-3.541843440283	-1.175516650844
CI	7.257926077538	-0.669339595852	-0.969950540910
Н	-5.558424692158	2.274231136099	-0.698013793510
lld-3p7

Ν	2.394797455437	-0.756692950501	0.772109803957
С	3.661325146052	-1.058621260996	0.907030466006
Н	4.033241043994	-1.981729497344	1.334927784781
Ν	4.514036077874	-0.093080351848	0.437664880212
С	3.727228525799	0.919677487707	-0.064858292784
С	3.955808070009	2.135496889640	-0.691568608693
Н	4.954060464642	2.523164554744	-0.883602201995
С	2.816272078994	2.837582192195	-1.075271320899
Н	2.907014829012	3.800816053952	-1.568503625394
С	1.539035152482	2.315762603189	-0.846377336925
Н	0.648366006013	2.862073326064	-1.150611237815
Ν	1.326233415507	1.140822581543	-0.240592141389
С	2.411163056846	0.465058625536	0.158143963418
Cu	-0.407000560067	0.186123178198	-0.023653733050
Ν	-0.992474836034	-1.913366260576	0.154062140809
С	-0.471217043568	-2.229300044802	1.501172640349
Н	0.576137840699	-2.533782732648	1.384441889208
Н	-1.020126381516	-3.070123205273	1.952513031184
С	-0.481874595190	-1.036062749112	2.465453969642
0	-0.346063691339	0.137601368934	1.894772892392
0	-0.591230735473	-1.218905919708	3.665233850024
С	-0.484706068713	-2.850368928762	-0.870404793925
Н	-1.056256826262	-2.671576945570	-1.790982678699
Н	-0.641946779973	-3.893964953356	-0.558011177255
С	1.001051343263	-2.662245886192	-1.158046501150
0	1.313558514525	-1.619886166546	-1.939737824514
Н	0.507970622650	-1.092933700650	-2.189248389109
0	1.848315336369	-3.412147857906	-0.728403388355
С	-2.469733815777	-1.918927307962	0.120808447681
Н	-2.866049960043	-2.819223035266	0.620261172109
Н	-2.782345755616	-1.973715228323	-0.929457856612
С	-3.067376305188	-0.683414106254	0.767354546771
Н	-4.165014087028	-0.716403235727	0.660980686072
Н	-2.846492199128	-0.664746880749	1.840675704145
Ν	-2.520035150876	0.545771998576	0.169088407671
С	-2.963678797826	0.742427450373	-1.226108632645
Н	-2.909543925143	1.816609232020	-1.442695560406
Н	-4.004905490243	0.415377799932	-1.363486832938
С	-2.046470367556	0.022821111253	-2.224676026798
0	-0.774213042006	0.093812832339	-1.914148347594
0	-2.500042776296	-0.532384078263	-3.211428255423
С	-2.749273994569	1.720418422269	1.033315848197
Н	-2.696825305793	1.386908637591	2.074527927427
Н	-3.739189506221	2.166327950985	0.855173001885
С	-1.673561566716	2.758208859800	0.738511571382
0	-0.616199456971	2.775511395580	1.559093125823
Н	-0.570697516172	1.940061468589	2.089171424643
0	-1.752752694419	3.516677574218	-0.205125571653
Н	5.522580251556	-0.141815310894	0.428983160235

lld-3p9

Ν	2.661358014489	-0.618007556157	1.364133165933
С	3.988704256892	-0.757249942549	1.682298796031
H	4.289567225152	-1.188313751831	2.630143896025
Ν	4.813252196485	-0.336015230761	0.756987873057
C	3,983279880053	0.126377678759	-0.241624259952
č	4.260387170910	0.707282620928	-1.473450058966
н	5 283971152996	0 863989727041	-1 805576757595
C	3 165659787159	1 077799449092	-2 248728366539
н	3 306070447505	1 543359750433	-3 220004705902
C	1 864527000162	0 859100036745	-1 801017173216
й	1 007878980163	1 128142358764	-2 411333559144
N	1 563802196542	0 289745827450	-0 614535262678
C	2 627661666868	-0.043940927940	0 125744832734
н	1 836316538444	-0.040040027040	1 033/73578/50
	-0 3/13/3600502	-0.79100900+000	-0 103654602021
N	1 838830055016	1 555782708840	0.1570037/0511
C	1 547450220842	2 117292006747	1 401410551250
Ц	-1.047400229042	2 046417845503	1.491410001200
	-0.041394700704	2.940417040005	1.005102000107
$\hat{\mathbf{C}}$	-2.4000000000077	1 000502512160	2 /1591010/615
õ	-0.000940401000	-1.099002010100	2.410019194010
0	-0.040730340719	-0.200022174402	1.799009070401
Ĉ	-1.093402027027	-1.000000490317	3.013010304490
	-1./ 11100/9//21	-2.34//30//1191	-0.931077574506
	-2.219/30/20032	-2.1440/0000103	-1.012091091003
П	-2.183533980374	-3.503762224031	-0.009090888084
	-0.229232106136	-2.784074007783	-1.204257930008
0	0.280943235243	-2.105290027182	-2.272008005904
П	-0.310932328012	-1.442520246457	-2.30/342390448
0	0.449595859104	-3.481/24/05442	-0.481655535502
	-3.14/0306/52/0	-0.877470424097	0.124365373329
н	-3.931966841348	-1.5208/9590/63	0.555024493266
Н	-3.41/405988252	-0.701932176620	-0.923306742676
C	-3.09/61145/919	0.433990213039	0.887186475595
н	-4.077152988397	0.935954624222	0.816293835329
н	-2.913820200754	0.243441382711	1.952040350157
N	-2.021510001932	1.307665437118	0.385451181527
C	-2.35/224519605	1.883480090871	-0.933305207970
н	-1./3565104/956	2.///5965161/1	-1.0/351855544/
Н	-3.410222008819	2.199980618203	-0.974351049685
C	-2.060988231257	0.921434408299	-2.087363198450
0	-0.998978863245	0.169199526103	-1.903355547234
0	-2.759866194284	0.899524358286	-3.084440086467
С	-1.673791866590	2.339781539893	1.383202521407
Н	-1.693862097339	1.868059353285	2.372704320114
Н	-2.401007162969	3.165929005243	1.376377391115
С	-0.289025782461	2.899473587042	1.076603777216
0	0.735267894406	2.312175933386	1.713097755674
Н	0.436185878681	1.480714211387	2.151554042910
0	-0.114259781810	3.802729940342	0.291198328377

lld-7p3

C 1.830474727518 -0.043167315267 -2.032379916544 H 1.085089756431 -0.022858521599 -2.820169981269 N 3.151564770568 -0.075832369829 -1.063017021803 N 4.962039232967 -0.092583103267 -0.703649447768 C 5.325478351559 -0.173740507172 0.80186362590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.688684284557 -0.175665628035 2.627332118210 C 2.994057061290 -0.13205498993 1.280325348531 C 2.644504699681 -0.09453828305 -0.075439305205 Cu -0.0405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.68054304276 2.4990855686869 -1.727073955906 H -1.48054304276 2.4990855686869 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934	Ν	1.454688266806	-0.072823798204	-0.737266516380
H 1.085089756431 -0.022858521599 -2.820169981269 N 3.151564770568 -0.043481910490 -2.297158116639 C 3.657155873957 -0.075832369829 -1.063017021803 N 4.962039232967 -0.092583103267 -0.703649447768 C 5.325478351559 -0.127330826146 0.603021822726 H 6.390859733111 -0.137440507172 0.801863662590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.68864284557 -0.175665628035 2.627332118210 C 2.994057061290 -0.132054898993 1.280325348531 C 2.644504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710400 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.499085868689 -1.727073955906 H -2.186950637241 0.468767233812 -2.180606538262 O -1.149089161892 -0.273363066699 -1.87077014900	С	1.830474727518	-0.043167315267	-2.032379916544
N 3.151564770568 -0.043481910490 -2.297158116639 C 3.657155873957 -0.075832369829 -1.063017021803 N 4.962039232967 -0.092583103267 -0.703649447768 C 5.325478351559 -0.127330826146 0.603021822726 H 6.390859733111 -0.137440507172 0.801863662590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.688684284557 -0.17566528035 2.627332118210 C 2.994057061290 -0.132054898933 1.280325348531 C 2.644504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298010 0.092574551791 C 2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.49908586689 -1.727073955906 H -1.480591637241 0.46876723312 -2.180606538262 O -1.149089161892 -0.273363066699 -1.870870704900	Н	1.085089756431	-0.022858521599	-2.820169981269
C 3.657155873957 -0.075832369829 -1.063017021803 N 4.962039232967 -0.092583103267 -0.703649447768 C 5.325478351559 -0.127330826146 0.603021822726 H 6.39059733111 -0.137440507172 0.801863662590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.688684284557 -0.175665628035 2.627332118210 C 2.94057061290 -0.132054898993 1.280325348531 C 2.644504699581 -0.094538828305 -0.0753439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.499085868689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.49089161892 -0.273633066699 -1.7270795596	Ν	3.151564770568	-0.043481910490	-2.297158116639
N 4.962039232967 -0.092583103267 -0.703649447768 C 5.325478351559 -0.127330826146 0.603021822726 H 6.390859733111 -0.137440507172 0.801863662590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.688684284557 -0.175665628035 2.627332118210 C 2.994057061290 -0.132054898993 1.280325348531 C 2.944504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.15591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.482809343667 2.57327378628 1.827877091543 H -1.482809343667 2.573257378628 1.827877091543 H -2.204606933004 3.582197787760 0.546804516898	С	3.657155873957	-0.075832369829	-1.063017021803
C 5.325478351559 -0.127330826146 0.603021822726 H 6.390859733111 -0.137440507172 0.801863662590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.68864284557 -0.175665628035 2.627332118210 C 2.994057061290 -0.13205488993 1.280325348531 C 2.644504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C 2.343230292328 1.726010076991 -1.3157276964540 H -1.680543042766 2.499085868689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.49089161892 -0.273363066699 -1.87087074900 O -2.970164900247 0.230712917366 -3.083083404068 C -1.482809343667 2.573273788628 1.827877091543	N	4.962039232967	-0.092583103267	-0.703649447768
H 6.390859733111 -0.137440507172 0.801863662590 C 4.363350618947 -0.147884185117 1.592470173187 H 4.688664284557 -0.175665628035 2.627332118210 C 2.994057061290 -0.132054898993 1.280325348531 C 2.64450469581 -0.09453828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.49908586689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.149089161892 -0.273363066699 -1.870870704900 C -2.970164900247 0.230712917366 -3.083083404068 C -1.506259091972 2.755395510703 0.746669153551 H -1.482809343667 2.573273786228 1.827877091543 H -0.50450985652 1.900046798576 1.525628173530 <	С	5.325478351559	-0.127330826146	0.603021822726
C 4.363350618947 -0.147884185117 1.592470173187 H 4.688684284557 -0.175665628035 2.627332118210 C 2.994057061290 -0.132054898993 1.280325348531 C 2.644504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.18060658262 O -1.149089161892 -0.273363066699 -1.870870704900 C -2.970164900247 0.230712917366 -3.083083404068 C -1.506259091972 2.755395510703 0.74669133551 H -4.2204606933004 3.58219778760 0.546804516898 C -0.122345801228 3.154086917286 0.248788961635 O 0.910263402519 2.600614816161 0.901462935183	H	6.390859733111	-0.137440507172	0.801863662590
H4.888684284557-0.1756656280352.627332118210C2.994057061290-0.1320548989931.280325348531C2.644504699581-0.094538828305-0.057439305205Cu-0.405724605659-0.043007710460-0.105591616841N-1.9522773682871.5090162980010.092574551791C-2.3432302923281.726010076991-1.315727696540H-1.6805430427662.499085868689-1.727073955906H-3.3755768417532.100385002663-1.390754531934C-2.1869506372410.468767233812-2.180606538262O-1.149089161892-0.273363066699-1.870870704900O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.24878961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.6565556109950.500378935143H-4.024136471828-1.0019498539551.1381	С	4.363350618947	-0.147884185117	1.592470173187
C 2.994057061290 -0.132054898993 1.280325348531 C 2.644504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.499085868689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.49089161892 -0.27336306699 -1.870870704900 C -2.970164900247 0.230712917366 -3.083083404068 C -1.48280933044 3.582197787760 0.546804516898 C -0.122345801228 3.154086917286 0.248788961635 O 9.9106414665 -0.680825095462 -0.60825095462 C -3.036501530129 0.888863068894 0.875412144705 H -3.984601040070 1.435329100421 0.733623832166	H	4.688684284557	-0.175665628035	2.627332118210
C 2.644504699581 -0.094538828305 -0.057439305205 Cu -0.405724605659 -0.043007710460 -0.105591616841 N -1.952277368287 1.509016288001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.499085868689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.49089161892 -0.273363066699 -1.870870704900 C -2.970164900247 0.230712917366 -3.083083404068 C -1.482809343667 2.573273788628 1.827877091543 H -2.204606933004 3.582197787760 0.546804516898 C -0.122345801228 3.154086917286 0.248788961635 O 9.910641416161 0.901462935183 H 0.594635885652 1.900046798576 1.525628173530 O 0.44250200177 3.910164114605 -0.680825095462 C -3.3	С	2,994057061290	-0.132054898993	1.280325348531
Cu-0.405724605659-0.043007710460-0.105591616841N-1.9522773682871.5090162980010.092574551791C-2.3432302923281.726010076991-1.315727696540H-1.6805430427662.499085868689-1.72707395906H-3.3755768417532.100385002663-1.390754531934C-2.1869506372410.468767233812-2.180606538262O-1.149089161892-0.273363066699-1.870870704900O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467885761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.565556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.0	Č	2.644504699581	-0.094538828305	-0.057439305205
N -1.952277368287 1.509016298001 0.092574551791 C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.499085868689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180066538262 O -1.149089161892 -0.273363066699 -1.870870704900 O 2.970164900247 0.230712917366 -3.083083404068 C -1.506259091972 2.755395510703 0.746669153551 H -1.482809343667 2.573273788628 1.827877091543 H -2.204606933004 3.582197787760 0.546804516898 C -0.122345801228 3.154086917286 0.248788961635 O 0.910263402519 2.600614816161 0.901462935183 H 0.594635985652 1.90046798576 1.525628173530 O 0.04250200177 3.910164114605 -0.680825095462 C -3.036501530129 0.888863096894 0.875412144705	Ċu	-0.405724605659	-0.043007710460	-0.105591616841
C -2.343230292328 1.726010076991 -1.315727696540 H -1.680543042766 2.499085868689 -1.727073955906 H -3.375576841753 2.100385002663 -1.390754531934 C -2.186950637241 0.468767233812 -2.180606538262 O -1.149089161892 -0.273363066699 -1.870870704900 O -2.970164900247 0.230712917366 -3.083083404068 C -1.506259091972 2.755395510703 0.746669153551 H -1.482809343667 2.57327378628 1.827877091543 H -2.204606933004 3.582197787760 0.546804516898 C -0.122345801228 3.154086917286 0.248788961635 O 0.910263402519 2.600614816161 0.901462935183 H 0.594635985652 1.900046788576 1.525628173530 O 0.042502000177 3.910164114605 -0.680825095462 C -3.036501530129 0.88863096894 0.875412144705 H -3.984601040070 1.435329100421 0.733623832166	N	-1.952277368287	1.509016298001	0.092574551791
H-1.6805430427662.499085868689-1.727073955906H-3.3755768417532.100385002663-1.390754531934C-2.1869506372410.468767233812-2.180606538262O-1.149089161892-0.273363066699-1.870870704900O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.435235264672.074324962282H-2.646491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1	C	-2.343230292328	1.726010076991	-1.315727696540
H-3.3755768417532.100385002663-1.390754531934C-2.1869506372410.468767233812-2.180606538262O-1.149089161892-0.273363066699-1.870870704900O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.13818282636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.76	Ĥ	-1.680543042766	2,499085868689	-1.727073955906
C-2.1869506372410.468767233812-2.180606538262O-1.149089161892-0.273363066699-1.870870704900O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.33272809861-0.0631150455583.796	Н	-3 375576841753	2 100385002663	-1 390754531934
O-1.149089161892-0.273363066699-1.870870704900O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.668545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.210988436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.1	C	-2.186950637241	0.468767233812	-2.180606538262
O-2.9701649002470.230712917366-3.083083404068C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.0	õ	-1 149089161892	-0 273363066699	-1 870870704900
C-1.5062590919722.7553955107030.746669153551H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.	õ	-2 970164900247	0 230712917366	-3 083083404068
H-1.4828093436672.5732737886281.827877091543H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-	č	-1 506259091972	2 755395510703	0 746669153551
H-2.2046069330043.5821977877600.546804516898C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446 <td< td=""><td>н</td><td>-1 482809343667</td><td>2 573273788628</td><td>1 827877091543</td></td<>	н	-1 482809343667	2 573273788628	1 827877091543
C-0.1223458012283.1540869172860.248788961635O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670<	н	-2 204606933004	3 582197787760	0.546804516898
O0.9102634025192.6006148161610.901462935183H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.892220275403 <td>C</td> <td>-0 122345801228</td> <td>3 154086917286</td> <td>0 248788961635</td>	C	-0 122345801228	3 154086917286	0 248788961635
H0.5946359856521.9000467985761.525628173530O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.33272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.123541479768-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	õ	0 910263402519	2 600614816161	0 901462935183
O0.0425020001773.910164114605-0.680825095462C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.33272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	0 594635985652	1 900046798576	1 525628173530
C-3.0365015301290.8888630968940.875412144705H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	0	0.042502000177	3 910164114605	-0 680825095462
H-3.9846010400701.4353291004210.733623832166H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	č	-3 036501530129	0 888863096894	0 875412144705
H-2.7767608724370.9717335070721.938162510114C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-3 984601040070	1 435329100421	0 733623832166
C-3.237072143296-0.5656556109950.500378935143H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-2 776760872437	0 971733507072	1 938162510114
H-4.024136471828-1.0019498539551.138182825636H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	C	-3 237072143296	-0 565655610995	0 500378935143
H-3.585176143598-0.646400009873-0.536213238200N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-4 024136471828	-1 001949853955	1 138182825636
N-1.983641360157-1.3343284737990.623273245232C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-3 585176143598	-0 646400009873	-0 536213238200
C-1.605558889121-1.5487149274472.035909028208H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	N	-1 983641360157	-1 334328473799	0 623273245232
H-0.958909133477-2.4352335264672.074324962282H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	C	-1 605558889121	-1 548714927447	2 035909028208
H-2.489147817129-1.7534865984192.658545413998C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-0.958909133477	-2 435233526467	2 074324962282
C-0.816745619284-0.3737884600592.623555224677O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-2 489147817129	-1 753486598419	2 658545413998
O-0.0087637335040.2109884436391.767998478486O-0.933272809861-0.0631150455583.796015542967C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	C	-0.816745619284	-0.373788460059	2 623555224677
O -0.933272809861 -0.063115045558 3.796015542967 C -2.086491757663 -2.600432111273 -0.133036735753 H -2.614744640112 -2.386005646850 -1.068938580322 H -2.659303056207 -3.352450012324 0.429960560115 C -0.694735799006 -3.152664023384 -0.416177574648 O -0.130272678863 -2.753864528446 -1.562957534976 H -0.659334637721 -2.028349092670 -1.979152640761 O -0.123541479768 -3.892220275403 0.353657618873 H 2.235741766543 -0.142382619203 2.059361457290	õ	-0.008763733504	0 210988443639	1 767998478486
C-2.086491757663-2.600432111273-0.133036735753H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	õ	-0.933272809861	-0.063115045558	3 796015542967
H-2.614744640112-2.386005646850-1.068938580322H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	C C	-2 086491757663	-2 600432111273	-0 133036735753
H-2.659303056207-3.3524500123240.429960560115C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	й	-2 614744640112	-2 386005646850	-1 068938580322
C-0.694735799006-3.152664023384-0.416177574648O-0.130272678863-2.753864528446-1.562957534976H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	н	-2 659303056207	-3 352450012324	0 429960560115
O -0.130272678863 -2.753864528446 -1.562957534976 H -0.659334637721 -2.028349092670 -1.979152640761 O -0.123541479768 -3.892220275403 0.353657618873 H 2.235741766543 -0.142382619203 2.059361457290	C	-0.694735799006	-3 152664023384	-0 416177574648
H-0.659334637721-2.028349092670-1.979152640761O-0.123541479768-3.8922202754030.353657618873H2.235741766543-0.1423826192032.059361457290	õ	-0 130272678863	-2 753864528446	-1 562957534976
O -0.123541479768 -3.892220275403 0.353657618873 H 2.235741766543 -0.142382619203 2.059361457290	й	-0 659334637721	-2 028349092670	-1 979152640761
H 2.235741766543 -0.142382619203 2.059361457290	0	-0 123541479768	-3 892220275403	0.353657618873
	й	2 235741766543	-0 142382619203	2 059361457290
H 5.662461101149 -0.076660793564 -1.437787135028	Н	5.662461101149	-0.076660793564	-1.437787135028

lld-9p3

Ν	1.417982414397	0.015600126256	-0.867296422723
С	1.819288357673	-0.111228431412	-2.179912637971
Н	1.068792048855	-0.215972350697	-2.956413955698
Ν	3.117473525609	-0.100398231281	-2.421050301366
С	3.657700447593	0.040810140919	-1.170851389254
С	4.962613036059	0.117597163799	-0.713294249525
Н	5.801684060977	0.066793003303	-1.403599118812
С	5.170102230951	0.262071908982	0.667264538943
Н	6.175646811192	0.325654034780	1.070728141738
С	4.104792429412	0.327598971831	1.545324224812
Н	4.218446578757	0.440444213255	2.617258149172
Ν	2.830844275729	0.251962626178	1.091280824040
С	2.591146597100	0.111464115066	-0.227364981868
Cu	-0.393707434956	-0.046097200524	-0.135002880077
N	-2.158156158695	1.258035329147	0.048414596254
С	-2.651986355304	1.269416231934	-1.346986590221
Ĥ	-2.139917828098	2.085987641782	-1.873142448136
H	-3.731525600202	1.479353922574	-1.383888865443
С	-2.352827908552	-0.032171691138	-2.100586258343
Õ	-1.202721426406	-0.585049183707	-1.794358977300
õ	-3.137737911891	-0.471291984948	-2.922528982799
Č	-1.913627989180	2.625852258586	0.550739519539
Ĥ	-1.790810216640	2.564420796007	1.639612786273
H	-2.765492626095	3.287478623473	0.333712427085
С	-0.662208452750	3.215602177927	-0.086595611442
õ	0 498622419861	2 847508411792	0 482049098239
Ĥ	0.340180628491	2,183933315722	1,195187148427
0	-0.697680578485	3,946865256689	-1.046917249833
Ĉ	-3.093754207507	0.557869418387	0.950112123009
Ĥ	-4.121763220864	0.934768917385	0.816645699665
Н	-2.800695664762	0.788670029570	1.982758443228
С	-3.069815236647	-0.942458978574	0.730309567877
Ĥ	-3.747571297958	-1.427244775778	1.452891599027
Н	-3.440993640124	-1.189644083347	-0.271002112603
N	-1.700016410684	-1.463414602684	0.859797617294
C	-1.233280235348	-1.457660195090	2.258740106826
Ĥ	-0.475431755849	-2.245017373083	2.357307518369
Н	-2.052692824422	-1.682712248527	2,957032205788
C	-0.559655062619	-0.144812342459	2.660005962079
Õ	0.132621573645	0.426540793018	1.687812890294
õ	-0.632282324931	0.284616080397	3,795564789757
Č	-1.540987216499	-2.770157515863	0.190212737161
Ĥ	-2.178950929255	-2.771611140543	-0.699009943558
H	-1.853854342601	-3.599578530527	0.843076297685
C	-0 072614058285	-2 958146871176	-0 181156850410
õ	0.233938274148	-2.847442909683	-1.477133619067
Ĥ	-0.469235440371	-2.332932933353	-1.939910962712
0	0.770781914169	-3.194976208771	0.657818525203
Ĥ	2.016188731519	0.308929274498	1.714451871541

lld-9p7

N	1 219569047714	1 110344144207	-0 517427079772
C	1 530769011278	2 258886701924	-1 074462376815
н	0 806797993811	2 982192578773	-1 433245716319
N	2 875821990731	2 463811816982	-1 101971016558
C	3 479695518054	1 366073501332	-0 516280912893
ĉ	4 786483090982	0 971020514039	-0.261492591656
й	5 651237/30520	1 575244261374	-0.201402001000
\hat{c}	1 017671100820	0.266700638558	0.357010620068
ц	5 005313862113	0.200799030330	0.537910020000
\hat{C}	3 783345757803	1 027555065453	0.000049097279
Ц	2 00100124706	2 000605122791	1 167021571252
	3.901901244700 2.527210672024	-2.000090132701	0.461214206105
	2.327310072024	-0.0403400/03/1	0.401314300103
	2.413912045083	0.527999348013	-0.144980108941
Cu	-0.462792405505	0.1/095/3159/8	-0.096295189830
N	-2.531523845225	0.652645734625	0.259783651421
C	-3.111365461064	0.711008073025	-1.0956/101/503
н	-3.034444943437	1.748263097934	-1.443503737039
Н	-4.173873470132	0.425551388381	-1.089210475737
С	-2.336568717202	-0.162221807173	-2.093409530288
0	-1.038449359017	-0.145784815532	-1.911231093866
0	-2.916720622913	-0.777157371666	-2.972394283537
С	-2.589416514375	1.930864366339	0.993992614024
Н	-2.490260827369	1.715221199792	2.061912651691
Н	-3.546030457395	2.450383195029	0.831127934784
С	-1.451233235069	2.825151500420	0.512610684570
0	-0.402509421611	2.960918795151	1.330275419446
Н	-0.345862967961	2.175740699902	1.933920295633
0	-1.488555682141	3.389954529286	-0.563300339026
С	-3.046094600252	-0.475381772169	1.052780375685
Н	-4.149322323782	-0.490288204827	1.048925015520
Н	-2.728887674137	-0.334325041096	2.092128824813
С	-2.536134785251	-1.801588161294	0.513859723425
Н	-2.900542122793	-2.620191960734	1.156814922285
Н	-2.949856551839	-1.974108502186	-0.487677086820
Ν	-1.062055978024	-1.843676964731	0.403653645425
С	-0.409233742336	-2.018285933565	1.718860143131
Ĥ	0.624939840729	-2.335216387002	1.530230240636
н	-0.904011311556	-2.804740029136	2.308774854907
C	-0 339635345303	-0 722579324166	2 533370087368
õ	-0.206667991615	0.363259644606	1.808780526984
õ	-0 387046007454	-0 747023127826	3 750781157937
č	-0 674447629552	-2 907696607659	-0 547606308514
й	-1.330864506311	-2 821628672371	-1 423239252245
н	-0.818021345716	-3 901748953223	-0.097922293105
C	0.781018411308	-2 794052449321	-0.990024644596
õ	1 031150781807	-1 873712757700	-1 930704101302
й	0 200806570335	-1 37171/67//21	-2 174304365144
0	1 654038530040	-3.400180430065	-2.17-334303144
ц	3 331380838/110	-0.499100400000 2 282212061657	1 476007402070
11	5.551509050410	5.205512904037	-1.4/030/4032/0

llla-1p7

Cu	0.840435055447	-0.065308369470	-0.129846632426
0	1.304468440146	-1.899969237106	-0.113216116994
0	3.077584259505	-3.283247216247	-0.223713609066
0	0.715076804458	1.824156471929	-0.263043002631
0	1.970458414752	3.677265918589	-0.500860420069
Ν	2.783362728883	0.259732861985	0.196553814039
С	-1.927885870216	0.707240705140	-0.080365853359
Ν	-5.221929232005	-0.744421193399	0.115134284075
Ν	-4.385602305595	1.339655672202	-0.040311719056
Н	-4.374508467545	2.347569190569	-0.105064124383
С	-1.618672057012	-1.615207390592	0.050024380481
Н	-0.868146656647	-2.401300596346	0.067673570697
Ν	-1.110504098403	-0.357778977835	-0.038349007350
С	-3.293756002678	0.498828538105	-0.022561577533
С	-3.846534372128	-0.798649746025	0.074829596365
С	-2.972795237673	-1.887220578725	0.111732423027
С	-5.490252816160	0.536778437775	0.043932690960
Н	-6.488681091180	0.959776177462	0.048765444671
С	3.483003987532	-0.927251494576	-0.318035490056
Н	4.441903910465	-1.093948546170	0.191553678323
Н	3.700139766880	-0.764879754149	-1.381169070676
С	2.581126389704	-2.172421328775	-0.197492686090
С	3.088722598717	1.562403538491	-0.413868269818
Н	3.361957728097	1.395369644276	-1.463254414920
Н	3.941179649378	2.056347668187	0.072349793530
С	1.845113320136	2.472186297550	-0.382115648043
С	2.846362215018	0.325742696089	1.661214677222
Н	2.207404268041	1.141151513175	2.016165453087
Н	3.876694546463	0.502934952305	2.004571962685
Н	2.487638414845	-0.618843810637	2.083169518074
Н	-1.445670214342	1.680009942443	-0.157348597464
Н	-3.336158076900	-2.908218986132	0.183078952659

llla-1p9

Cu	0.844419624310	-0.054684871795	-0.159355031363
0	1.264843556920	-1.902896722852	-0.132126966205
0	3.000553194596	-3.331816444266	-0.254097273128
0	0.762734572277	1.831107527103	-0.308006181822
0	2.062674870332	3.649538801067	-0.580285017984
Ν	2.799047614591	0.221137456267	0.144790062293
С	-1.927237262930	0.754788007059	-0.045389592355
Ν	-5.176718172350	-0.560484388439	0.193399102946
Ν	-4.320295102475	1.515947837961	0.047027167390
С	-1.622869714925	-1.568300949577	0.051724330747
Н	-0.877537856031	-2.359760342999	0.047206235962
Ν	-1.112423724053	-0.312086817800	-0.032962484978
С	-3.302991587743	0.579172783420	0.038730932549
С	-3.819246091476	-0.733029189097	0.129817746683
С	-2.976024331767	-1.840150048396	0.137691221783
С	-5.405095120225	0.799685307398	0.139178487404
Н	-6.413653362340	1.195840981749	0.173177802428
С	3.463833006365	-0.986810903243	-0.366209343510
Н	4.422811035966	-1.173883587972	0.136267523025
Н	3.676043823935	-0.838052333910	-1.432321050589
С	2.532919701848	-2.208107916490	-0.228920662263
С	3.128929507264	1.510484227720	-0.481135964821
Н	3.388377219063	1.326999775518	-1.531223094014
Н	3.997020835534	1.988765602117	-0.007129397964
С	1.906713634388	2.449990127437	-0.446482536714
С	2.879683776412	0.299259984404	1.607804545986
Н	2.266961992892	1.135051434924	1.961417502429
Н	3.918252831892	0.451649258191	1.938304639622
Н	2.500320715064	-0.631294469962	2.042867324978
Н	-1.452046422118	1.730452462654	-0.123093901977
Н	-3.331521450379	-2.864919865194	0.203740545911
Н	-5.877155314785	-1.284739723165	0.264170327475

llla-7p1

Cu	-0 709189098794	-0 164422847403	-0 011795451476
Õ	-0 219450024847	1 683488687770	-0.058906867443
õ	-1 087979486552	3 750627478731	-0 234775235989
õ	-1.528252770880	-1.873908350746	-0.067731905647
õ	-3.539377268236	-2.867104460618	-0.273733646055
Ň	-2.554586852296	0.525276342277	0.315934172106
C	4.684480106596	-0.790006294473	-0.034026236963
Ň	1.107374927593	-0.850483998130	0.031869325916
N	2.785810796282	-2.421490649755	0.036029820128
Ν	3.931128368245	1.467986545937	-0.080048748148
Н	4.172022956464	2.450257647202	-0.113228670154
С	4.950391672139	0.555578235777	-0.074036881428
Н	5.950695186032	0.971912996164	-0.103443047126
С	3.339063261657	-1.190884862613	-0.000922429558
С	2.307320586295	-0.193189180719	-0.007552755367
С	2.614318614148	1.147566166123	-0.047619628615
Н	1.871671222137	1.943150181316	-0.058602260037
С	1.471552380415	-2.152958547625	0.049383379756
Н	0.707758403177	-2.924400383921	0.071782891954
С	-2.596149186338	1.888312642405	-0.232346701829
Н	-3.340935585170	2.515978873335	0.276263212505
Н	-2.887407323227	1.826796684468	-1.288340860632
С	-1.202180591391	2.539648298716	-0.159873187916
С	-3.465020420802	-0.477573353738	-0.258270862871
Н	-3.626185531069	-0.230392087215	-1.314995470629
Н	-4.446929427647	-0.472004852756	0.234554598236
С	-2.829147789660	-1.881984186201	-0.185094883660
С	-2.625934370733	0.534522258562	1.781683891740
Н	-2.463329418777	-0.480396817247	2.158674968966
Н	-3.607316325789	0.892991414627	2.127408652265
Н	-1.845863315789	1.192132957277	2.179538335835
н	5.496073306706	-1.511280537423	-0.030214517965

Illa-7p9

Cu	-0.709927457527	-0.092509197336	-0.077513409112
0	-0.338445928776	1.757509135479	-0.184715269247
0	-1.351018689527	3.751903961309	-0.441494078511
0	-1.395534616661	-1.865145298277	-0.084250027230
0	-3.320611011134	-3.017735713407	-0.265993308552
Ν	-2.601612859401	0.460849191446	0.215980166415
С	4.739755140813	-0.644232493533	0.105201085129
Ν	1.148247093341	-0.727916637503	0.025564334648
Ν	2.759672680296	-2.250847786390	0.087816201367
Ν	3.987048023474	1.667397057079	0.041499522988
С	4.951269425061	0.728925027588	0.084350632974
Н	5.971755326807	1.111897084853	0.102812618338
С	3.404317180122	-1.029375197701	0.079819579176
С	2.376106244112	-0.072586133803	0.036333711479
С	2.712385853938	1.285169694626	0.017221471882
Н	1.939869520870	2.052513952614	-0.023444105389
С	1.423165820170	-2.016740004554	0.051833612142
Н	0.663331399588	-2.789789683066	0.043459978065
С	-2.726029295225	1.795140750554	-0.391018955888
Н	-3.518739697498	2.390138992563	0.082339847051
Н	-2.995629957365	1.669441141635	-1.446959856261
С	-1.377149443744	2.541037978881	-0.326024312697
С	-3.429744165654	-0.627155790813	-0.326690263053
Н	-3.603900970201	-0.428876988573	-1.391585005939
Н	-4.412283145933	-0.679394844705	0.161872842494
С	-2.693643767238	-1.976224989822	-0.206134213174
С	-2.693082838075	0.526862130224	1.679371825079
Н	-2.457654105957	-0.455000697212	2.103119127364
Н	-3.704275303425	0.821180392806	1.997935065037
Н	-1.973049294998	1.260863160629	2.055638700523
Н	5.564640121536	-1.351742941641	0.139000968692
н	3.191563718304	-3.163429253262	0.111921514101

Illa-9p1

Cu	0.732672192217	-0.113055566817	-0.222644370699
0	1.503280373804	-1.848423186386	-0.246928446732
0	3.474984959265	-2.911081715048	-0.483779656673
0	0.297461378958	1.740780774588	-0.331983758925
0	1.221020013207	3.771967631056	-0.622500601895
Ν	2.611030234942	0.529643485618	0.010410904917
С	-4.625009655960	-0.746642674400	0.051232034919
Ν	-1.093999687841	-0.767523752241	-0.065339941418
Ν	-2.739785830213	-2.368677223419	0.087954299447
С	-3.948062806203	1.555047241285	-0.123199549416
Н	-4.324695222581	2.569833368608	-0.178776797348
Ν	-4.901353152492	0.578613922983	-0.026055408700
Н	-5.871889297487	0.863530795038	-0.012756496734
С	-3.302114506620	-1.124545272759	0.030003823567
С	-2.279676838380	-0.119726521915	-0.069904503442
С	-2.611832115047	1.240145393290	-0.147237633151
С	-1.447265215134	-2.093004303940	0.024078961154
Н	-0.668704751733	-2.849486788088	0.037004741954
С	3.472492245958	-0.521307695159	-0.551838059974
Н	4.469025130093	-0.527866262327	-0.089097784449
Н	3.608574073768	-0.318631736231	-1.621465902498
С	2.798418847651	-1.901298972431	-0.406975950601
С	2.672049959823	1.867629391812	-0.594885498160
Н	2.924401127364	1.754460141737	-1.656569993875
Н	3.451730610494	2.492618534571	-0.137848522462
С	1.299641056894	2.561960701234	-0.501648829418
С	2.731975665578	0.595996608025	1.471195423355
Н	1.987644035625	1.295657524427	1.865745091922
Н	3.735704117890	0.934387749510	1.770061686803
Н	2.548809265473	-0.396633422990	1.895428264929
Н	-5.464380519227	-1.430062237940	0.124209048725
Н	-1.842474690098	2.005100068303	-0.227268575163

llla-9p7

Cu	0.708853704851	-0.095097452788	-0.076494862976
0	1.381728751007	-1.871810597228	-0.123685014746
0	3.298640518178	-3.032688283305	-0.336438607599
0	0.351625436552	1.762413544230	-0.134180231253
0	1.378024119697	3.754609286144	-0.343690021167
Ν	2.604058285735	0.437996264122	0.229465923101
С	-4.739517824635	-0.580705625960	0.048663421591
Ν	-1.151703400321	-0.719984636845	-0.001931416064
Ν	-2.779962076964	-2.226180740924	0.018441214126
С	-4.035603950569	1.612604101141	0.033104746536
Н	-4.352933906891	2.654773854921	0.034114907544
Ν	-5.040599841203	0.712864869962	0.051273747535
С	-3.409149934936	-0.990950873821	0.028249624495
С	-2.367090698973	-0.047928499185	0.011399334698
С	-2.679861875305	1.310451649914	0.013439579540
С	-1.446542868553	-2.009188588481	-0.002569767266
Н	-0.694144188442	-2.789540312852	-0.020383293374
С	3.424205782209	-0.642176817987	-0.340504942427
Н	4.407042776364	-0.712733099879	0.145077921009
Н	3.598097023309	-0.419669112644	-1.400680031986
С	2.678932558375	-1.988815772767	-0.250699436782
С	2.738790986368	1.786341962490	-0.343281398681
Н	3.006783938465	1.685732096743	-1.402300693873
Н	3.536537617951	2.362792164700	0.144418193576
С	1.396119171703	2.540810033766	-0.258069965140
С	2.695516167759	0.465814247815	1.694143502890
Н	1.977693913948	1.192082436401	2.089213683058
Н	3.707513611098	0.748395402747	2.020541490472
Н	2.456567299790	-0.525926966896	2.092047036910
Н	-5.569389358895	-1.289374121037	0.062738961102
Н	-1.901038736607	2.068604867371	-0.006051674209
Н	-3.223964001006	-3.133218279837	0.021742069312

IIIb-1p7

~			
Cu	0.884675673877	-0.824882285522	0.206091090038
0	0.838117135515	-2.173364876512	1.541082020574
0	2.188388078189	-3.457267116899	2.806691243882
0	1.279555617092	0.479719341476	-1.122891973178
0	3.007467647591	1.486171532800	-2.158236890999
Ν	2.847456004700	-0.787661084022	0.562834677798
С	-1.574843307619	0.271050181251	-0.804286236269
Ν	-5.141840862921	-0.033149316675	-0.377143757273
Ν	-3.772592329636	1.204419014365	-1.665833235417
Н	-3.489514223346	1.883474793004	-2.357880359894
С	-1.904826279451	-1.363588057317	0.846565704656
Н	-1.393709923462	-2.049164565894	1.517524306126
Ν	-1.075625894483	-0.614938951793	0.072874164115
С	-2.947640626504	0.411095908248	-0.898009892868
С	-3.831033514852	-0.353056646546	-0.101587973504
С	-3.283267449491	-1.269414039912	0.798513856013
С	-5.054087568980	0.888766265120	-1.305004946130
Н	-5.901840145161	1.380792035260	-1.768799757496
С	3.181877590792	-2.119724149002	1.081859244970
Н	4.112679263644	-2.125500244165	1.662995605557
Н	3.327710170958	-2.787938663358	0.223287775395
С	1.999073476518	-2.649446515709	1.915037821476
C	3.473482564909	-0.356511548232	-0.693134520983
Н	3.578552864448	-1.239990175558	-1.336130657005
Н	4.477223266783	0.061286947737	-0.544311511422
С	2.547762930154	0.650434273163	-1.400233849679
Ċ	2.900159987355	0.267621042413	1.620456272094
Н	2.438505723557	1.161769043969	1.180104302022
Н	2.244617412400	-0.081025390284	2.429720388556
Н	-0.846872856426	0.830809583899	-1.388668631239
Н	-3.909299482613	-1.886053291794	1.436782987489
С	4.272897769119	0.574387740842	2.136532359876
Č	4.796532687737	-0.128590050153	3.227010391000
Č	5.058006153839	1.556453902249	1.522841265126
Ĉ	6 082302563341	0 137921074143	3 688227365112
č	6.343831610960	1.823606514727	1.983014460776
č	6 857959783973	1 113132006733	3 065431481117
н	4 183841619467	-0.885742685726	3 719529108847
н	4 650227811149	2 118200911735	0 680518867396
н	6 476680787826	-0 413692913713	4 539483917446
н	6 943077237806	2 592205067482	1 498624767766
н	7 862168662157	1 324449273207	3 428352508492

IIIb-1p9

Cu	-0.397655886914	0.204703108074	0.552178676002
0	-0.092600369956	2.078974215114	0.457588572983
0	1.523207310327	3.626021428048	0.719740907686
0	-0.365920098620	-1.684818052585	0.743408108669
0	1.016736798251	-3.388764872228	1.252892685642
Ν	1.584160978939	0.076700977609	0.748176114751
С	-3.031772509330	-0.823110323998	-0.047011933052
Ν	-6.253889422569	0.225229718640	-0.977474310583
Ν	-5.305233206748	-1.770216116465	-0.547451649605
С	-2.870929132740	1.509831991684	-0.222672822132
Н	-2.194362072812	2.355405347343	-0.127366807068
Ν	-2.304282451218	0.302144365385	0.033370951315
С	-4.373924769441	-0.758365723210	-0.401149854538
С	-4.949344772367	0.504651075730	-0.666665059696
С	-4.196694378155	1.672154741276	-0.580652664272
С	-6.396851085328	-1.144662972416	-0.887181183015
Н	-7.350723842262	-1.618587450230	-1.089237193416
С	2.012316513601	1.356959169994	1.324401252556
Н	3.071861308022	1.572305389265	1.136410208734
Н	1.878846715687	1.297106022093	2.412329975985
С	1.109211913946	2.482056527753	0.784759208772
С	1.826596999215	-1.147318605756	1.521616307068
Н	1.706286065063	-0.901625971924	2.584728126698
Н	2.843517271149	-1.537722650226	1.388482161246
С	0.768867095240	-2.201320404536	1.142859805065
С	1.979023350163	-0.065305225573	-0.686502963364
Н	1.436533111260	-0.942052892541	-1.065123812205
Н	1.580545732438	0.820018945206	-1.200005409740
Н	-2.514545814614	-1.754725972692	0.173124807753
Н	-4.600130288547	2.662052061707	-0.776121572667
Н	-6.973723583725	0.889213740767	-1.224686693057
С	3.451958314964	-0.204971248618	-0.922602904800
С	4.251693642754	0.925993549443	-1.119657931755
С	4.051789718835	-1.468958784928	-0.929354875922
С	5.624386262218	0.796841185023	-1.309311128020
С	5.424226708623	-1.599254123084	-1.118732940439
С	6.212336235135	-0.466030464084	-1.307056234608
Н	3.787727775689	1.913906001914	-1.130073579217
Н	3.431454763789	-2.356058938919	-0.789731194159
Н	6.234925680404	1.684380064520	-1.464429867420
Н	5.877925711133	-2.588487957244	-1.124506717477
Н	7.285407708299	-0.567716875766	-1.458754569206

IIIb-7p1

Cu	-0.409050645729	0.499668588397	0.217731206938
0	0.324214056419	1.821766395868	1.398109698793
0	-0.204649543651	3.715616773655	2.491453923802
0	-1.437126074528	-0.607425154050	-0.938738924171
0	-3.499044213223	-0.788516681769	-1.829824894666
Ν	-2.138172204409	1.428985022018	0.574418771287
С	4.601713996105	-1.543381626989	0.661207744515
Ν	1.198875627262	-0.586472973417	0.106550681461
Ν	2.569412346719	-2.292715174892	-0.596950476291
Ν	4.206172947583	0.445515490730	1.908814284431
Н	4.573864362784	1.151311567965	2.533798821235
С	5.044138583769	-0.559028562344	1.508648113565
Н	6.052083819780	-0.512495308184	1.904525340065
С	3.268721883288	-1.480434329307	0.223570355469
С	2.431419851069	-0.404993227340	0.673069410434
С	2.911464763818	0.563212048943	1.524817174917
Н	2.318774078004	1.398065424939	1.894680386144
С	1.360757380990	-1.711030888181	-0.626914190428
Н	0.527418387655	-2.102165357309	-1.202760235480
С	-1.800105915421	2.808568421104	0.941669752514
Н	-2.593395439609	3.299014353565	1.520339479841
Н	-1.670348456575	3.382087739552	0.014704175368
С	-0.464781589316	2.819329326587	1.706625684885
С	-2.949804746006	1.213973230972	-0.630452174966
Н	-2.645741138170	1.960550203562	-1.375720428723
Н	-4.023177431104	1.349664475251	-0.447342331139
С	-2.649349153422	-0.189438933546	-1.193636164340
С	-2.626512585988	0.632039837494	1.741280581910
Н	-2.639546200592	-0.414559812525	1.409007769196
Н	-1.854139401079	0.724631429561	2.516696136537
Н	5.269855314518	-2.339292859582	0.346562845764
С	-3.967831118787	1.041639021732	2.268342451032
С	-5.135665044005	0.474865558629	1.745949419858
С	-4.074189692969	2.006138594438	3.276056460948
С	-6.384204111923	0.870395115080	2.215907693907
С	-5.322496558135	2.402281464362	3.747029118738
С	-6.479027134609	1.835420544355	3.216306648410
Н	-5.058447738327	-0.285796732681	0.967065179125
н	-3.166188212178	2.441541714028	3.697477145055
н	-7.284821866797	0.419556709239	1.803496972369
Н	-5.391555904052	3.150909249586	4.534052136288
Н	-7.455480831342	2.141603808644	3.587297310685

IIIb-7p9

Cu	-0.444483707977	0.642098838010	0.158507485985
0	0.167567181915	1.974083343507	1.360028151078
0	-0.535587534471	3.807404766268	2.463546110905
0	-1.341979577990	-0.518116764222	-1.058910859991
0	-3.343564027596	-0.841712449824	-2.038443213553
Ν	-2.247587824606	1.429187374761	0.462392485245
С	4.627283368026	-1.388866059425	0.612099074346
Ν	1.217571101270	-0.405965593278	0.048459362301
Ν	2.527680235898	-2.040646217316	-0.680166745299
Ν	4.241326429353	0.601653498363	1.955085440434
С	5.020800012227	-0.399277608892	1.504593313168
Н	6.039701305725	-0.405068373755	1.892260927741
С	3.310096118313	-1.293150393578	0.178152616320
С	2.472788490429	-0.259561103583	0.631108495766
С	2.981888183743	0.681669158644	1.532112071943
Н	2.359117937510	1.495630839047	1.902515077853
С	1.296063958435	-1.471391542874	-0.723404357488
Н	0.467600169620	-1.840718463632	-1.317069279207
С	-2.005079924044	2.826935494904	0.841492088142
Н	-2.846482288283	3.266440940552	1.391671993334
Н	-1.876207921946	3.407953518295	-0.080814641402
С	-0.698965114326	2.911111832332	1.655738341676
С	-3.008540919618	1.165641721812	-0.765632946445
Н	-2.757377495171	1.950268917174	-1.491037638181
Н	-4.093413532293	1.202823346188	-0.605842778485
С	-2.576391566869	-0.191778949537	-1.350877724100
С	-2.713911924673	0.597843979877	1.614759487048
Н	-2.665048973119	-0.445687960049	1.275438491881
Н	-1.962272143480	0.726548145279	2.405113496310
Н	5.307439135610	-2.172533633093	0.287345067244
Н	2.807022839987	-2.866121895323	-1.190516879311
С	-4.084339511025	0.933061647523	2.119210301123
С	-5.212351466033	0.302348359445	1.583207222295
С	-4.256711739671	1.893701400273	3.121760667205
С	-6.487352232179	0.632169006019	2.032741314965
С	-5.531328468263	2.224222022312	3.572077955791
С	-6.648132961672	1.594967582489	3.026680014358
Н	-5.083898555706	-0.458731763248	0.811475931894
Н	-3.380005887101	2.378528532483	3.554876933443
Н	-7.356452944569	0.131983257539	1.609751466396
Н	-5.651668131147	2.970730013372	4.354767481968
Н	-7.644904898823	1.850386250563	3.381564420956

IIIb-9p1

Cu	0.913877886266	-0.874893380660	0.113936427996
0	1.147006269873	-2.156773904716	1.504226983897
0	2.748125483915	-3.144680569668	2.744370386212
0	1.048973287974	0.433990125816	-1.275235192807
0	2.551165028957	1.649603649718	-2.429648646697
Ν	2.860961567715	-0.515243272576	0.371969554847
С	-4.386426889932	-0.519580820920	-0.870082695004
Ν	-1.027999278412	-1.024274589534	0.103369828903
Ν	-3.068026533056	-1.871492526178	0.749027242486
С	-3.061885679445	0.930511202628	-2.259472692924
Н	-3.121465920819	1.664179043426	-3.055004512339
Ν	-4.258433196575	0.408091766651	-1.850799959195
Н	-5.099237147909	0.734546705471	-2.308896263771
С	-3.237168961213	-0.958093311401	-0.253419815499
С	-1.966477213022	-0.426749012005	-0.663127805797
С	-1.881475312692	0.532971257829	-1.681660668661
С	-1.754565033984	-1.866996146175	0.910480566108
Н	-1.234589711936	-2.483625769625	1.637092137939
С	3.422949979578	-1.762716410573	0.904299462832
Н	4.378441437909	-1.609656864644	1.421705909551
Н	3.612048435340	-2.432903038069	0.055579883706
С	2.384117540110	-2.426534719747	1.829183380802
С	3.364009758532	-0.026657042306	-0.916592646071
Н	3.597364346636	-0.899526015690	-1.539959439854
Н	4.287032557775	0.558486616961	-0.815632733191
С	2.261061420964	0.787929800488	-1.617156940864
С	2.790604523911	0.565057882573	1.402790486011
Н	2.196304478969	1.373016832294	0.955478275386
Н	2.211174750888	0.149578472986	2.238212220868
Н	-5.388036372756	-0.860465316848	-0.630583187340
Н	-0.922163331880	0.939193289410	-1.995277971321
С	4.118865908037	1.073090692860	1.874274537942
С	4.766658766267	0.464217581575	2.954685081440
С	4.739435701400	2.149250614955	1.230666977323
С	6.013137498258	0.915812212358	3.377091841375
С	5.985991755157	2.602098365150	1.652548911257
С	6.624955501486	1.984698078642	2.725363128018
Н	4.282416332875	-0.368788204391	3.467543566630
Н	4.232659458659	2.637153363116	0.396030319878
Н	6.505386008691	0.435074438920	4.220269832649
Н	6.456655507837	3.442301050816	1.145412692748
Н	7.598263072620	2.340672885884	3.058048692538

IIIb-9p7

_			
Cu	0.853972354943	-0.898947791216	0.243149680210
0	0.974641240840	-2.252006588633	1.579753316536
0	2.479918645547	-3.367245440728	2.829277644950
0	1.067353599235	0.433637243522	-1.091216976221
0	2.655190806392	1.629095244981	-2.149499727814
Ν	2.799234270017	-0.641346153378	0.575612585148
С	-4.488365453029	-0.325755923348	-0.795276835155
Ν	-1.108926854758	-0.995313574408	0.216191509644
Ν	-3.102579090559	-1.780142949874	0.790125528016
С	-3.173588247901	1.080348630850	-2.060612869380
Н	-3.170394227113	1.852818058255	-2.828795251389
Ν	-4.395796568015	0.618368656429	-1.724884176302
С	-3.340367717956	-0.823560237511	-0.184665839685
С	-2.070202679243	-0.337656974331	-0.539802118333
С	-1.969681018215	0.653979575060	-1.514216581339
С	-1.767381044270	-1.843665476086	0.987902802088
Н	-1.277833531548	-2.506496605897	1.692534508776
С	3.287992019474	-1.928928601046	1.085816930140
Ĥ	4.224089288692	-1.831356353472	1.649755788080
H	3.491274607954	-2.576274135604	0.222942965822
C	2.188434642417	-2.589302237999	1.938557254279
Č	3.352796238281	-0.141794944895	-0.689360855932
Ĥ	3.553514520942	-1.007301264991	-1.333920013749
H	4.301427597185	0.392271040328	-0.552464856368
Ċ	2 304473552205	0 748756927950	-1 384475301712
č	2 752530055005	0 413722873481	1 634597023075
н	2 198012019272	1 255823188438	1 199149636124
н	2 143065007372	-0.000731245298	2 448992860217
н	-5 487610454636	-0.683130116208	-0 540470170866
н	-1 004239562458	1 053244822954	-1 814935689703
н	-3 791747367866	-2 337620550142	1 273974540582
Ċ	4 000020401026	0 857711778685	2 140731562769
č	4 690984829230	0.207762009821	3 224700727708
ĉ	4 767163816024	1 917234544868	1 526208660374
ĉ	5 0/5601173060	0 60223851/005	3 670137810501
ĉ	6 0221/171635/	2 31231607/0/7	1 0706618307/1
ĉ	6 613360770503	1 65/01/85/550	3 055665362718
ц	4 162380264503	0 6100/0710632	3 717719244027
и Ц	4.102309204303	2 429540267666	0.690077610232
	+.29/012000400 6 400052068002	2.430343307000	1 525452270004
	0.400000000000000000000000000000000000	2 1200562/1200	4.020402010004
	0.0004/0000102	3.139930341290	1.4900/0000410
Н	1.593033346725	1.9000/9358405	3.4132//218/89

IVa-1p3

0	0 0004 54 000005	0 000740400007	0 404470545400
Cu	0.906151200935	-0.060712406837	-0.131172515439
0	1.167730108330	-1.934260913110	-0.1/0/14/30600
0	2.747953845014	-3.533980683119	-0.210054013826
0	1.086120415126	1.81/959/02666	-0.328123506317
0	2.570141991304	3.508604565614	-0.28/61106132/
N	2.85//184/2980	0.003261160053	0.353653936519
С	-2.013917142478	0.850601703482	0.121759044886
N	-5.125369389705	-0.951608696746	-0.040565158123
С	-4.594785702759	1.287645077675	0.290650257677
С	-1.565136955071	-1.423161809123	-0.241216907968
Н	-0.837464225615	-2.218192576715	-0.370914658862
Ν	-1.106693571779	-0.182487170761	-0.062581648964
С	-3.383593913340	0.568270258394	0.139119005690
С	-3.818221830415	-0.773831749108	-0.055423238569
Ν	-2.860351568099	-1.740420745365	-0.242831595282
С	-5.589613098522	0.326859877479	0.175150578346
Н	-6.661381304099	0.492158390452	0.239068497906
С	3.456929598560	-1.250094136746	-0.130350378123
Н	4.324387115952	-1.550359394414	0.472835554262
Н	3.810811070910	-1.091056929625	-1.156235305350
С	2.403518567703	-2.369286641745	-0.160317889651
С	3.398846713893	1.260035896087	-0.183313262982
Н	3.758208182595	1.074368489138	-1.202901822722
Н	4.250637043847	1.626912670450	0.404740150230
С	2.295975688183	2.326130330773	-0.257189574276
С	2.789990793140	0.031699755270	1.820943527328
Н	2.234583203564	0.918316106636	2.145050183308
Н	3.797275819477	0.062374858208	2.262072994005
Н	2.271520915650	-0.864066736939	2.178058317509
Н	-4.728985837672	2.349346943140	0.465552185289
Ν	-1.527829398005	2.086539888670	0.317971458733
Н	-0.553105261348	2.303846985159	0.089113556388
Н	-2.191412498396	2.845163832689	0.331094282805
Н	-3.147967049531	-2.703089900624	-0.381842263044

IVa-1p9

Cu	0.913519252883	-0.105508433844	-0.260210197734
0	1.224621429162	-1.971884540896	-0.206125170679
0	2.847088980826	-3.531093014108	-0.230951143306
0	1.055798948724	1.778206726998	-0.538303652315
0	2.503558586942	3.500687523635	-0.573727501822
Ν	2.881790857654	0.027354178677	0.157930803722
С	-1.940408425843	0.784287842550	0.143821546050
Ν	-5.044896833406	-0.903711143004	0.008555378165
С	-4.516769290676	1.228004807685	0.469058213959
С	-1.597232681430	-1.474145245964	-0.392927976303
Н	-0.852412501848	-2.237004349152	-0.602043418878
Ν	-1.080439973870	-0.233652538879	-0.144852290410
С	-3.320285526577	0.497613790037	0.204084776910
С	-3.686903234006	-0.827157869416	-0.078414789855
Ν	-2.861492929722	-1.839385052828	-0.383798416200
С	-5.549995705511	0.337607649761	0.341662461434
Н	-6.615282318900	0.480105208793	0.462451730272
С	3.495750326434	-1.231378788174	-0.289178647787
Н	4.392959201432	-1.481187075454	0.293540839231
Н	3.806097068192	-1.112026410471	-1.334466373888
С	2.468382995640	-2.374833102432	-0.224165328778
С	3.379920328932	1.270611060606	-0.444166833122
Н	3.702999650084	1.052445994462	-1.469601886723
Н	4.246993019562	1.674019546221	0.096328242251
С	2.254636518650	2.312570235857	-0.511942104747
С	2.853009117546	0.115136845325	1.623438258839
Н	2.284073767516	1.000953940645	1.926456364085
Н	3.870750735979	0.188432408992	2.035458755069
Н	2.366061368718	-0.777103974465	2.030099528711
Н	-4.621922299293	2.273843600583	0.730610788979
Ν	-1.459603258179	2.014115602144	0.405169038981
Н	-0.513122037706	2.250739461771	0.087360215485
Н	-2.128896120457	2.766721837739	0.450620107312
Н	-5.576540017352	-1.747487722639	-0.146467317648

IVa-3p1

Cu	0.822043565632	0.300483319734	-0.797850573903
0	0.579921386078	-1.164119124769	-1.967394801832
0	1.667921691085	-2.945786044732	-2.810536596206
0	1.459009431046	1.840875367363	0.089880760220
0	3.316496332086	2.686009733478	1.041081987355
Ν	2.524965952055	-0.576866542506	-0.245049683863
С	-3.863768999396	1.303533968136	-0.648357047663
Ν	-1.182013282305	-0.405677664592	0.964325492599
С	-3.450840553921	-0.238221032924	1.419030043947
С	-1.765297490487	1.675065091178	-1.796015278239
Н	-1.295041275577	2.167277206140	-2.639566140859
Ν	-3.119484781398	1.863265203662	-1.658546664466
Н	-3.572595055033	2.491587877802	-2.309713972213
С	-3.172037131429	0.531928022764	0.265451642535
С	-1.755780551245	0.372914679365	0.060349805075
Ν	-1.077247153671	0.946485337893	-0.972002648287
С	-2.221139255528	-0.765682545395	1.786127635835
Н	-2.025910732174	-1.413313408726	2.635773750361
С	2.870239235909	-1.498894277147	-1.339866130607
Н	3.432864583651	-2.369416772510	-0.975847506594
Н	3.516510272800	-0.966236021478	-2.048276874599
С	1.610389059225	-1.951074473049	-2.107553462592
С	3.461944019717	0.522010792104	0.043017485005
Н	4.019294650395	0.749418981946	-0.874081775367
Н	4.196237508578	0.239617972919	0.809688110773
С	2.708866041253	1.802613507095	0.460602571645
С	2.152370635793	-1.303437064247	0.975288878278
Н	1.773012208484	-0.595847311732	1.718755804934
Н	3.020588269647	-1.841143507205	1.386553270637
Н	1.353840861517	-2.015329574904	0.745446775079
Н	-4.400202596528	-0.382622587949	1.922490736687
Ν	-5.193718323345	1.607799153016	-0.603964866600
Н	-5.733665632715	1.053288564453	0.045336074862
Н	-5.677169888394	1.773812175580	-1.476396802654

IVa-3p9

Cu	0.833912408452	-0.154441044683	-0.127879635145
0	1.274721922523	-1.986919578065	-0.275091193012
Ō	3.014977247809	-3.392340136106	-0.525358525387
0	0.787532116569	1.759307112023	-0.111028312689
0	2.088677831105	3.593624142911	-0.172316854498
Ν	2.795814979596	0.103559550245	0.203262439033
С	-3.828114952646	-1.068926780852	0.154867069883
Ν	-1.873643951182	1.873715537151	0.057226910354
С	-4.097093895459	1.558787352546	0.181561495847
С	-1.621632579327	-1.684828388719	0.010487621806
Н	-0.881839069173	-2.479990306573	-0.048457044865
Ν	-2.896263924384	-2.039088851987	0.089684029392
С	-3.452433484043	0.287114397378	0.138744407633
С	-2.067451447331	0.531885580060	0.059469582072
Ν	-1.117469057544	-0.433915617102	-0.001250539252
С	-3.100207519803	2.497324860352	0.128744848437
Н	-3.155452748475	3.577582358672	0.133174291896
С	3.470177647465	-1.046773389284	-0.417467267669
Н	4.427866561476	-1.274653935072	0.070111138370
Н	3.684774155752	-0.797165843986	-1.463985430292
С	2.543773605008	-2.277870457778	-0.397504174303
С	3.145501231533	1.443795230824	-0.285380021286
Н	3.413743865347	1.366373990311	-1.346330825473
Н	4.012825662125	1.863713074113	0.242180075899
С	1.938293733993	2.387099007541	-0.168691781122
С	2.861755931180	0.033534478435	1.668512356237
Н	2.246740209946	0.830364092047	2.099875937028
Н	3.896937415380	0.149044040669	2.023071844605
Н	2.475961115029	-0.935002395890	2.002682525919
Н	-5.158644342525	1.766220942097	0.233693526582
Ν	-5.119736570563	-1.474824049732	0.200954183646
Н	-5.282320109390	-2.458284032447	0.360655397620
Н	-5.843618890280	-0.831916951956	0.478714255908
Н	-0.938827098053	2.292724012361	-0.001645332818

IVa-9p1

Cu	0.485830092122	-1.992274974924	-2.809192427859
0	-0.144799925889	-1.188688438853	-4.425012539284
0	0.169675526881	-1.223900044954	-6.656230315949
0	1.164536687164	-3.113927340411	-1.426823230654
0	2.663243021862	-4.759094097939	-1.070133595890
Ν	1.162309345575	-3.427980280760	-4.026634312880
С	-0.950668711353	1.292885358387	1.215515035981
Ν	-0.406899962557	-0.678798817411	-1.686317143757
С	-2.123035214317	0.693905012414	-1.028863164370
С	1.187812127905	0.179260815301	1.315003596570
Н	2.078976758109	0.055196995906	1.924383384332
Ν	0.219995743813	1.006015133739	1.859896093973
С	-1.132748070700	0.686535421184	-0.016293041831
С	-0.083940044209	-0.179413677938	-0.487245535282
Ν	1.077070896504	-0.409446873355	0.170419460671
С	-1.630307220209	-0.140193672413	-2.009889210243
Н	-2.066784316378	-0.385471269994	-2.971560601782
С	1.411787832377	-2.769542405813	-5.314925740140
Н	1.385670375810	-3.478278558444	-6.154821292041
Н	2.416946650109	-2.329520123995	-5.286816546548
С	0.387382133765	-1.634795725642	-5.528771998552
С	2.297222730113	-4.037040307013	-3.321162180136
Н	3.194971187414	-3.443985273389	-3.537648858635
Н	2.491213279040	-5.065084846648	-3.658695175365
С	2.040406957202	-4.002992980652	-1.798017288701
С	0.028969852547	-4.354523862382	-4.110929767162
Н	-0.211910828604	-4.721909369659	-3.108345196912
Н	0.267017061274	-5.209728526178	-4.761908360265
Н	-0.840643810342	-3.827501378424	-4.516921209837
Н	-3.067449152853	1.225120198693	-1.049086012007
Ν	-1.857604828599	2.089931805527	1.850968916463
Н	-2.620077143595	2.416645155750	1.274704050064
Н	-1.516163631171	2.790932353208	2.494056080725
н	0.374229600882	1.374245598000	2,790276126590

IVa-9p3

Cu	0.945721020859	-0.203114055071	-0.066880565470
0	1.721962662739	-1.930117984933	-0.124129550574
0	3.702023054063	-2.973093052465	-0.375748110292
0	0.517941503692	1.676892352692	-0.110586694473
0	1.442284439066	3.718805766892	-0.317248862421
Ν	2.814437474499	0.446256541591	0.213004207903
С	-4.411717527899	-0.197459451059	0.022503291210
Ν	-0.893356185107	-0.793869651769	0.014418500958
С	-2.697246809702	-2.208905979483	0.063435645016
С	-3.353402427627	1.836786733291	-0.056374594419
Н	-3.395630995295	2.922246222793	-0.093777277885
Ν	-4.477528102734	1.158983389218	-0.019762068068
С	-3.179014542374	-0.870750671167	0.029020126704
С	-2.017651171561	-0.065370110442	-0.004146274223
Ν	-2.122734101345	1.293901095609	-0.047901022338
С	-1.324812324561	-2.109355884219	0.048938614970
Н	-0.575583582808	-2.892410493456	0.057959936330
С	3.687325208919	-0.582953946172	-0.374368517424
Н	4.679751547574	-0.597829461845	0.096572547894
Н	3.830442235948	-0.347447246709	-1.436312419696
С	3.018472589332	-1.970315499047	-0.275483368056
С	2.888364543962	1.804445525346	-0.342823385537
Н	3.149266759535	1.729307194259	-1.405854983722
Н	3.666863563189	2.409125306347	0.142491415782
С	1.525042204217	2.508025528028	-0.240072461977
С	2.917968725471	0.460446973267	1.677486838933
Н	2.166007560497	1.141663494533	2.089529231091
Н	3.916507551035	0.791835355098	1.999965736061
Н	2.734046493044	-0.547601196449	2.062664116058
Н	-3.273351076501	-3.126148358400	0.086079837487
Ν	-5.600989948191	-0.839707893323	0.029839067488
Н	-5.648722095796	-1.823696125206	0.238512140525
Н	-6.434064760046	-0.285016068135	0.156909933384
Н	-1.244240485856	1.843502650518	-0.080126031183

IVb-1p3

Cu	0.822431281481	-0.764314489912	0.180426854785
0	0.529230653250	-2.161089142594	1.431384296613
0	1.584378740312	-3.688436759341	2.702421760247
0	1.524754535554	0.440834402504	-1.115085300962
0	3.444045011129	1.304656916557	-1.913432407627
Ν	2.755929530087	-1.020990141046	0.670054535069
С	-1.685795375838	0.842772412929	-0.585115011683
Ν	-5.184212378342	0.298619071012	0.067191875145
С	-4.013311783962	1.948845173149	-1.077574231668
С	-1.934663914362	-1.114998433168	0.683403441623
Н	-1.476537906990	-1.951131572206	1.202487880682
Ν	-1.128825189934	-0.249878057404	0.063959907866
С	-3.073660329176	1.019062798052	-0.567389040773
С	-3.886337646038	0.064164191877	0.106721469403
Ν	-3.261849815206	-0.992951761228	0.722965015225
С	-5.246299488407	1.463116603655	-0.664972128139
Н	-6.217566286792	1.907730938263	-0.862710467952
С	2.883651243699	-2.402650720593	1.149276351885
Ĥ	3.755347298250	-2.544157442412	1.800286386025
Н	3.019694797328	-3.051821540902	0.274882658820
C	1.584330169793	-2.813662733408	1.857028864559
C	3.551875164805	-0.638048455653	-0.501095724539
Ĥ	3.615164460926	-1.508150082076	-1.166834074121
H	4.577221237226	-0.349810731982	-0.238085591658
С	2.832228338094	0.490481878886	-1.250608228393
C	2.852589506400	-0.019249679757	1.779189727693
Ĥ	2.563192180562	0.946699252964	1.342921855296
Н	2.079632554448	-0.299453601026	2.507227894540
Н	-3.825319815279	2.845898303117	-1.657092696805
Ν	-0.855836303563	1.713297154802	-1.178285405067
Н	0.129221769850	1.478634574030	-1.335878388253
Н	-1.269875892162	2.444721761674	-1.734184175265
Н	-3.821419112925	-1.681673812643	1.214082743760
С	4.197150077427	0.072018336919	2.433309231988
C	4.508578944100	-0.740647138363	3.528868980276
Č	5.165372953871	0.958259237760	1.948953554830
Ċ	5.766196647416	-0.677194098181	4.120935113265
Č	6.423299909552	1.022816777595	2.540664918030
Č	6.725569458143	0.203204404009	3.625758808669
Ĥ	3.752425340883	-1.422019225072	3.922783813131
Н	4.923494576664	1.607656707867	1.105655535698
Н	5.994809831959	-1.312170422244	4.974585431730
H	7.166472505032	1.718983602106	2.156953312677
н	7.707977676589	0.256103157547	4.091128219776

IVb-1p9

Cu	0.342325301563	-0.695576454022	1.352975865297
0	-0.047599331602	0.645288138671	2.640137948530
0	0.643283611133	1.503913120493	4.603346205082
0	1.034898282112	-2.183474906842	0.361966597766
0	2.794845305835	-3.582041170383	0.228213996553
Ν	2.042260785502	-0.907339844853	2.409551148814
С	-1.284796039012	-0.555016312099	-1.181756887533
Ν	-4.412636385084	0.897306557310	-1.965426973068
С	-2.927878207766	-0.228727118570	-3.215485756846
С	-2.186956448671	0.473841093741	0.724484264581
Н	-2.018441013546	0.715858701412	1.770139468823
Ν	-1.174110758014	-0.228785355383	0.136993039710
С	-2.430320643945	-0.122895286313	-1.882711981621
Ċ	-3.380750309644	0.585580231825	-1.131337627744
N	-3.301134581431	0.901423037390	0.169970517969
С	-4.140765206957	0.407987102658	-3.227837153554
H	-4.843302070525	0.559510809089	-4.036081247220
С	1.735761950326	-0.460738376687	3.773212898016
H	2.632394251495	-0.163747905919	4.331761693206
Н	1.279851449918	-1.303277854073	4.309007181066
С	0.711809382153	0.684164434134	3.705486379745
Ċ	2.486546542743	-2.293789666178	2.236855633773
Ĥ	1.936839696410	-2.915758825604	2.955096447625
Н	3.557408727652	-2.424149696052	2.438247786822
С	2.126288271173	-2.755027210271	0.818822600557
Ċ	2.907950524483	0.065503687328	1.672374314515
Ĥ	2.919842475360	-0.268478816432	0.625633196367
Н	2.379273655784	1.027116215888	1.707570012856
Н	-2.461861370694	-0.701956133669	-4.071169764929
N	-0.293234968157	-1.233744491701	-1.788112501603
Н	0.367886721925	-1.762824827793	-1.208145536050
Н	-0.482225535429	-1.593512656968	-2.710787925030
Н	-5.233712444103	1.412277405417	-1.683871049655
С	4.302071255803	0.199343024347	2.204816657212
Ċ	5.326671351842	-0.628633999003	1.733646253492
Č	4.593617793360	1.142588517576	3.196097042435
Č	6.614718037725	-0.522922302217	2.250387016317
Č	5.881445265853	1,249248864852	3,713225898704
Č	6.892585306826	0.415016416650	3.241995153299
Ĥ	5,109363123687	-1.356587954765	0.949986750592
Н	3.801965965638	1.800429694848	3.558493205820
Н	7.403662914719	-1.170801454020	1.873305297577
Н	6.095741424333	1.989042818266	4.481900969779
Н	7.900660090760	0.500539356751	3.643821947267
-			

IVb-3p1

Cu	0 471215452637	-0 950007139591	0 265454476460
0	0 377786114735	-1 494742964566	-1 547182795309
õ	-1 114019780654	-2 060368977100	-3 137556196267
õ	0 292906858195	-0.680383208340	2 130577084425
õ	-1 276515506588	-0 522034695912	3 739086897022
Ň	-1 521054576170	-0.911205554486	0.209306360722
C	4 980483921690	0.625607728041	-0 191642915727
N	1 535457182493	1 538683379553	-0 289424648065
C	3 495961276200	2 726162671615	-0 646826084927
C C	3 554123246225	-1 259745557050	0.328479927519
н	3 541603942121	-2 313470885229	0.583333892363
N	4 792314399316	-0 694135154489	0.141966936318
н	5 602713728919	-1 275507499778	0.313781722253
C	3 838979937609	1.393186713248	-0.319232449767
C C	2 573406133462	0 736351402636	-0 114124439276
N	2 453866273479	-0 582991354997	0.203725034347
C	2 109052559286	2 744571953208	-0 607015052406
н	1 470276257343	3 601534864989	-0 799578493371
C	-1 898649653188	-1 810989562885	-0.888579720087
н	-2 890116990578	-1.580310435578	-1 208204703366
н	-1 943341376569	-2 830926019908	-0.485232611024
C	-0.817521846843	-1 782551070782	
c	-1 05302/025/16	-1.762351070702	1 5667227/0028
н	-1 983221307418	-2 364677716528	1 620007164057
н	-2 962435078263	-2.004077710020	1 796287406582
C	-0.924360118056	-0.303024433740	2 505081546162
C	-1 760666546424	0.529209065538	-0 114690715890
н	-1 249802962756	1 107782725050	0.665696091410
н	-1 224536790701	0 72/101/83102	-1 052332867200
н	4 154107465315	3 559100588233	-0.867332008615
N	6 267287583667	1 068179575689	-0.304285621886
н	6 363030143607	1 080086764352	-0.304203021000
н	6 968888604898	0 420100760334	-0.700001939339
C	-3 205637691660	0.4201007000004	-0.000000200001
C	-3.877102237361	0.912332110242	-0.2200000007010
C	-3 909942635710	1 349271607668	0 006630058324
C	-5 225681354480	1 159117271033	-1 538909916990
ĉ	-5 258460149267	1 681106373385	0.815160355455
C	-5 918857946194	1 583805554926	-0.407632093533
н	-3 329270462192	0 505448757132	-2 332903007147
н	-3 388145567700	1 434133110176	1 861530372634
н	-5 73477101001	1 000566186307	-2 408642610261
н	-5 703228583780	2 021400206426	
Ц	6 072066082011	1 845080830744	0.480446673467
11	-0.912900003011	1.040300030744	-0.400440073407

IVb-3p9

~	0 007/77070/00		
Cu	0.68/1//3/8130	0.523239336303	0.144584006831
0	1.453627661770	-0.684834250113	-1.100680580124
0	3.406306952404	-1.236417616146	-2.077399807919
0	0.288061822336	1.914505196016	1.405394931325
0	1.224616595929	3.576287178277	2.599277684430
Ν	2.587211474491	1.049176520604	0.507347186333
С	-3.628884534585	-1.444440708916	-0.259321816056
Ν	-2.272876195067	1.210872006832	1.637837276341
С	-4.355158763077	0.368982973667	1.519015735252
С	-1.398968607610	-1.268387266893	-0.774150504432
Н	-0.545700439448	-1.632871671494	-1.341634243990
Ν	-2.560911438540	-1.880131527660	-0.954349150826
С	-3.509365087600	-0.365253789740	0.635793254729
С	-2.221288163655	0.195543174289	0.741015224684
Ν	-1.136181448077	-0.234704477205	0.051006637030
С	-3.563295024520	1.319333994072	2.108262836937
Н	-3.808907319978	2.081847450264	2.835111335449
С	3.331035079224	0.738432087607	-0.719736293644
Н	4.406917064886	0.616555285445	-0.541846420806
Н	3.205891536375	1.581558424819	-1.411358009890
С	2.723748657770	-0.518224341219	-1.368776451800
С	2.563805982755	2.445633132582	0.954457654560
H	2.546054780207	3.085769139324	0.063000911224
Н	3.453253739385	2.719290639770	1.536016266046
С	1.279613875942	2,701506157821	1.755673603632
Č	2,899160525836	0.098567764165	1.619980812333
Ĥ	2.154654372814	0.293676932255	2.403772426642
H	2.706068138214	-0.906321752248	1.221697173010
H	-5.414222106318	0.229539518867	1.696848902361
N	-4.803845893048	-2.075802425666	-0.498943324964
н	-4.757672142635	-2.931628554549	-1.032579756998
н	-5 573619684461	-1 969978860448	0 142026868026
н	-1 450415589601	1 779231276655	1 870556419116
Ċ	4 289730523060	0 202214287704	2 167782692277
č	4 571447122424	1 070344750345	3 228158879892
č	5 329728892891	-0 553824260882	1 615905444198
Ċ.	5 867513987735	1 188652691788	3 720627725438
č	6 626346929041	-0 436182725148	2 107511777756
ĉ	6 806025047153	0 136555331503	3 150057565648
й	3 761071/31653	1 651010318/20	3 67318/830173
н	5 11/36/863350	-1 2//273308305	0.708621762010
Ц	6 07245792710C	1 865080092601	1 5/8185010217
Ц	7 125025662111	1 0321///05607	1 671620/22251
	7 010276662045	- 1.002 144490007 0 525596047042	2 5/6106122617
п	1.910210002915	0.02000947942	3.340190133017

IVb-9p1

Cu	0.284461196453	-1.633691365761	-3.339370392299
0	-1.103668018854	-1.263634593033	-4.610300594049
0	-1.723541495057	-1.728077346905	-6.727471310879
0	1.668387665259	-2.396807519564	-2.266726821181
0	3.462719542249	-3.754103136735	-2.404754456339
Ν	0.833455681859	-3.025922411596	-4.662489770291
С	-0.361600502848	1.748163421672	0.806116575403
Ν	-0.433828275278	-0.389833613402	-2.027132227439
С	-2.078294163146	0.647072743549	-0.809966563004
С	1.872270366283	1.146191425580	0.120268273700
Н	2.924291941307	1.292207912318	0.350157999908
Ν	0.994590577193	1.800851633360	0.967606888808
С	-0.820345569103	0.976389797045	-0.248416794540
С	0.166383286451	0.308190193221	-1.055444576029
Ν	1.504721343493	0.416166874098	-0.880287507125
С	-1.784059090118	-0.172889083249	-1.878717393019
Н	-2.462090525492	-0.623865485561	-2.594753764284
С	0.419113066269	-2.497788103462	-5.966495009775
Н	0.367243624027	-3.272585043360	-6.742535817613
Н	1.170741456392	-1.762779992729	-6.283961275086
С	-0.936005821794	-1.781732534096	-5.796419456574
С	2.263020746846	-3.244421209095	-4.417553736611
Н	2.816365989205	-2.439404123100	-4.919046719820
Н	2.623295904216	-4.196656403758	-4.828491061758
С	2.519758217868	-3.154773870675	-2.898106941365
С	0.000015931166	-4.186987763929	-4.229202174468
Н	0.257687300673	-4.370269302335	-3.178187887116
Н	-1.042085415857	-3.842756269070	-4.260765315244
Н	-3.065979845615	0.953954926737	-0.486225835842
Ν	-1.144319361168	2.397028522100	1.715966840215
Н	-2.119366951246	2.476320514344	1.464710992979
Н	-0.778975884349	3.227473845074	2.161353040698
Н	1.378031132808	2.299433291587	1.760950239585
С	0.180147790561	-5.426485759142	-5.051725054697
С	1.153611870551	-6.370818911523	-4.708160011860
С	-0.606617498272	-5.646199491375	-6.187749652642
С	1.342265857775	-7.507788351040	-5.488277190187
С	-0.418758402730	-6.782972612211	-6.968431322749
С	0.556719866541	-7.714674373096	-6.620085378245
Н	1.763795110796	-6.208327950086	-3.817845648167
Н	-1.372567605956	-4.916053788487	-6.455499993194
Н	2.101566517514	-8.235971739323	-5.208824051581
Н	-1.038900801000	-6.943397767957	-7.848544670999
Н	0.701552355154	-8.605614605817	-7.228742896835

IVb-9p3

Cu	-0.278589000000	0.501137000000	0.503570000000
0	0.270548000000	2.315606000000	0.365761000000
0	2.082864000000	3.631039000000	0.613725000000
0	-0.467154000000	-1.406872000000	0.756730000000
0	0.686888000000	-3.256240000000	1.320889000000
Ν	1.665071000000	0.116085000000	0.743277000000
С	-5.425730000000	-0.356326000000	-0.711253000000
Ν	-2.113329000000	0.787234000000	-0.038549000000
С	-4.022309000000	1.883456000000	-0.680345000000
С	-4.160785000000	-2.175145000000	-0.114074000000
Н	-4.069660000000	-3.242678000000	0.068896000000
Ν	-5.323690000000	-1.692524000000	-0.487548000000
С	-4.323126000000	0.498864000000	-0.551710000000
С	-3.107570000000	-0.103265000000	-0.153711000000
Ν	-3.042882000000	-1.448372000000	0.062967000000
С	-2.689329000000	2.004549000000	-0.360331000000
Н	-2.063522000000	2.888971000000	-0.332379000000
С	2.233611000000	1.343610000000	1.316614000000
Н	3.319206000000	1.413596000000	1.173468000000
Н	2.043589000000	1.326707000000	2.397727000000
С	1.507047000000	2.561072000000	0.710969000000
С	1.765038000000	-1.117138000000	1.531092000000
Н	1.679371000000	-0.848864000000	2.592020000000
Н	2.728432000000	-1.626364000000	1.400557000000
С	0.597584000000	-2.051256000000	1.177653000000
С	2.068453000000	-0.085875000000	-0.683346000000
Н	1.455978000000	-0.917184000000	-1.057956000000
Н	1.756506000000	0.821794000000	-1.216677000000
Н	-4.689906000000	2.689012000000	-0.961679000000
Ν	-6.653640000000	0.084478000000	-1.065970000000
Н	-6.775356000000	1.017096000000	-1.425986000000
Н	-7.352582000000	-0.606935000000	-1.292679000000
Н	-2.131039000000	-1.845170000000	0.358084000000
С	3.526904000000	-0.356191000000	-0.894200000000
C	4.423016000000	0.703366000000	-1.074593000000
Č	4.016928000000	-1.666488000000	-0.895953000000
Ċ	5.782139000000	0.457762000000	-1.243570000000
Č	5.376141000000	-1.913250000000	-1.065338000000
Č	6.260398000000	-0.850789000000	-1.237640000000
Ĥ	4.045190000000	1,727244000000	-1.085236000000
Н	3.321022000000	-2.498239000000	-0.771599000000
H	6.468369000000	1.290432000000	-1.385449000000
Н	5.744109000000	-2.937514000000	-1.068410000000
Н	7.323038000000	-1.043166000000	-1.373871000000

Va-p1

Cu	-2.937067752350	-0.204864786636	-0.096911112157
0	-3.825715798174	1.474894583987	0.055945079044
0	-5.868396361746	2.413033440311	0.066988600463
0	-2.371623969836	-1.970353568609	-0.434576922561
0	-3.175733178680	-4.020701959914	-0.906811369984
Ν	-4.741790769438	-0.994638736832	0.214383545054
С	-1.424681835290	3.020985077105	0.024908732108
Ν	1.145780787454	0.568474771637	-0.005108558302
Ν	-1.125160194045	0.533382307928	0.013973238098
С	0.662282324266	4.221061815302	0.000334112313
Н	1.089999739022	5.216886872289	-0.005812247834
Ν	-0.703887250961	4.164530645143	0.018945476437
С	-0.707944977056	1.842879040421	0.010660766495
С	0.715752246803	1.859159257640	-0.000663130986
С	1.416060046454	3.074027266438	-0.009981203626
С	0.011755903286	-0.169801484447	0.004056511697
Н	0.028928180306	-1.255491167670	0.005020383445
С	-5.723025577552	0.032664272270	-0.166502866982
H	-6.662036016657	-0.066486778443	0.394737779287
Н	-5.964060405808	-0.096127530740	-1.228871734670
С	-5.133960065246	1,443082544893	0.015509343299
C	-4.750475150241	-2.264651436386	-0.530936800412
H	-5.103837787052	-2.063290342960	-1.549693633946
н	-5.435998009009	-2.997305991060	-0.084206218119
С	-3.324330465626	-2.846619969111	-0.627869492714
C	-4.736728936954	-1.224436053104	1.664504221609
Н	-3.911604911102	-1.896126668430	1.922643663517
Н	-5.683565775932	-1.676713477316	1.995375189391
Н	-4.597373947431	-0.270672412426	2.184400198537
Н	-2.512777870251	3.065864983178	0.044222943434
Н	2.504062424823	3.093244641726	-0.029826279304
Cu	2.958036545532	-0.178058925394	0.103697388873
0	3.877603467328	1.477587552012	-0.069640821039
0	5.941363842653	2.371434649937	-0.093054506263
0	2.358719673909	-1.934096280955	0.450060883224
0	3.120676810725	-3.997140965493	0.936881272003
Ν	4.744120570877	-1.010918577209	-0.209342682827
С	5.746805972249	-0.001130282352	0.161701353374
Н	6.682381537878	-0.123987199350	-0.400698506360
Н	5.986849954077	-0.126785967757	1.224676590118
С	5.184405864397	1.419639205348	-0.031383213123
C	4.730147445778	-2.276362903530	0.542383740822
Н	5.092356000685	-2.077005884071	1.558446836501
Н	5.398516031980	-3.025571860150	0.096847800729
С	3.293280605153	-2.828448060152	0.648357937421
С	4.727379239808	-1.246982192954	-1.658077371587
H	3.887193018653	-1.902472410989	-1.909422852005
Н	5.663107029857	-1.720273057284	-1.991403425642
Н	4.605464663467	-0.292533848897	-2.181025460489
Н	-1.216169920985	5.038317853054	0.029116823639

UM06l/6-31G* Free Energy: -4776.857016

Cu	-0.850065006818	-3.451316772820	-6.363966062160
0	-0.665387350031	-4.982824562023	-5.277177736418
0	0.188826945172	-7.066008939708	-5.284852230395
0	-0.951551044919	-2.127007372985	-7.716506216087
0	-0.351925445066	-1.716039751428	-9.846398881407
Ν	0.541404975916	-4.289975732113	-7.519357958332
С	-2.370109077791	-1.204993690437	-5.413526461546
Ν	-4.163695256245	-0.064539752613	-2.528399823247
Ν	-3.730456227086	0.756695293555	-4.545033784057
Н	-3.732837118514	1.403664200806	-5.321605516093
С	-2.171473750354	-2.913282241922	-3.816297718300
Н	-1.752683549098	-3.900367684859	-3.636392701544
Ν	-1.906408197685	-2.409955878499	-5.050635444144
С	-3.118126953969	-0.483562097364	-4.500058568822
С	-3.397876080747	-0.989390943070	-3.217254692683
С	-2.910765597100	-2.245158444091	-2.855625113943
С	-4.332238208834	0.956998202237	-3.352843762648
Н	-4.891232076266	1.846797990128	-3.084469869879
С	0.460551109892	-5.735170752545	-7.254285349810
Н	1.417623910617	-6.241620485074	-7.438471317760
Н	-0.278226465833	-6.170113025884	-7.938866470262
С	-0.017358802516	-5.988678607857	-5.809768633486
С	0.271307340709	-3.819584047656	-8.886849182505
Н	-0.439103833520	-4.511948909953	-9.355473067995
Н	1.178154415200	-3.811406598685	-9.506654552299
С	-0.375147730129	-2.421034317998	-8.855047563695
С	1.784069971508	-3.716208141624	-6.989180709468
Н	1.750296660411	-2.625687709326	-7.082863426709
Н	2.658969685862	-4.095419315514	-7.537971186214
Н	1.884750285572	-3.981529672624	-5.931656114687
Н	-2.118329142719	-0.872793269403	-6.419382746140
Н	-3.103391410065	-2.661931856208	-1.869958793360
Cu	-4.884904261089	-0.039496555699	-0.695252491205
0	-4.178366210803	-1.699281083817	-0.137076131476
0	-4.012198082383	-3.023922570916	1.674599608340
0	-5.627587743318	1.687196840755	-0.941289287701
0	-6.722847816532	3.311179269231	0.167183306648
Ν	-5.954683861184	-0.094436632685	0.979861506625
С	-5.200161692986	-0.958429680260	1.902171924094
Н	-5.853817449534	-1.440136044577	2.641532194422
Н	-4.485407172092	-0.334395033812	2.452772420457
С	-4.403150189457	-2.018340995892	1.114256839952
С	-6.169097894269	1.310825889196	1.361572270143
Н	-5.323252522729	1.632335661843	1.981908866777
Н	-7.081535297877	1.439844016594	1.959130689125
С	-6.211874949686	2.209152731827	0.109196290115
С	-7.205622572035	-0.731599760589	0.549716460501
Н	-7.671172758398	-0.126408047725	-0.235129185687
Н	-7.907689227048	-0.827707567140	1.391020714620
Н	-6.988217274137	-1.728179549014	0.151829660471

Va-p9

Cu	-2.768471687365	0.209645348338	0.375946257410
0	-1.256455970908	-0.221929203256	1.436243128889
0	0.064442399303	-1.942135551738	2.013279772364
0	-4.505299256773	0.336122885597	-0.319065529156
0	-6.234765869562	-0.967099735661	-0.927636028077
Ν	-2.812995300048	-1.717940260678	-0.125763413305
С	0.058527139602	1.349931579294	-0.473270213125
Ν	-1.670059256474	4.272959428675	0.409441371014
Ν	-2.218027129451	2.128169878733	0.172363850967
С	1.718699384203	2.984650254351	-0.417866409592
Н	2.787470366378	3.160498283098	-0.513742168749
Ν	1.340555700599	1.693474618848	-0.602997214617
С	-0.875512967703	2.297822420243	-0.104886987656
С	-0.499125008897	3.635000508041	0.056931342301
С	0.836004877102	4.009217589852	-0.110291557994
С	-2.657860775459	3.327746243028	0.470229028314
Н	-3.679705884858	3.565865426064	0.736175896157
С	-1.956699132816	-2.440895364968	0.838696223617
Н	-1.429486500242	-3.274723375032	0.359653664025
Н	-2.589261636703	-2.844767113993	1.638589510903
С	-0.937598169728	-1.487839043222	1.478154161955
С	-4.249862274262	-2.047078126733	-0.142658291108
H	-4.545354151891	-2.353359375795	0.868834821707
н	-4.466052990391	-2.885661608337	-0.817948260881
С	-5.097382296790	-0.815456103570	-0.523275808891
C	-2.238877018125	-1.774391832093	-1.482580292318
Ĥ	-2.787407772008	-1.089242810349	-2.138338609819
н	-2.310836420081	-2.795210181545	-1.884452291633
н	-1.174267889195	-1.513911605910	-1.453251356498
Н	-0.195779418381	0.309807187791	-0.646123787239
Н	1,192178980993	5.027915024458	0.011735434253
Cu	2.536894054389	0.104977480702	-0.565801682483
Õ	1.203981015089	-1.161360481186	-1.044592234876
Õ	0 687874632428	-3 339140750268	-0 904871929210
õ	4 138596983764	1 074320332079	-0.358847460537
õ	6 327435388598	0 746449910746	0.049879101319
Ň	3 470336830686	-1 401171626455	0.330026490617
C	2 856932594758	-2 653538609475	-0 151693295240
й	2 804993887009	-3 407385754760	0.643874605722
н	3 479239837770	-3 065504292948	-0.955535014084
C	1 453169101693	-2 405108391077	-0 725494509477
C C	4 894296835791	-1 171798776023	0.032509256154
й	5 125465370427	-1 633577566405	-0 936064604274
н	5 5/0110257888	-1 632665503466	0.784820765037
C	5 188055412304	0 3308/58853/8	-0.070038267331
Č	3 181055/80788	-1 168/61263/71	1 757181770600
ц	3.5/1/52885838	0 171012866504	2 03/07/137070
Н	3 608501276612	-0.171912000094	2.004014101010
Ц	2.030304270013 2.102257551/17	1 220171001911	2.0700000000000000000000000000000000000
Ц	1 780016/76295	5 25557/122000	0 613046674347
11	-1./033104/0203	0.200014122009	0.010040074047

Vb-p1

Cu	2.862676234144	0.269554358075	0.697276852339
0	3.730560125113	1.965368976875	0.879069689237
0	5.723586705935	2.900240896467	1.337769820342
0	2.308430870770	-1.536291361636	0.612463531471
0	3.104616801749	-3.632380728838	0.841169767292
Ν	4.707178353208	-0.471806471413	0.835472430507
С	1.398575706153	3.495335529919	0.315231523772
Ν	-1.118961344148	1.048248192541	-0.230515978405
Ν	1.101421690437	1.008122319041	0.246298077496
С	-0.639529221750	4.700078593408	-0.120444204555
Н	-1.056237973475	5.696847155158	-0.207268763245
Ν	0.696310979991	4.640468468124	0.165706973373
С	0.695131707169	2.318633619259	0.164078982028
С	-0.695907266238	2.338097948388	-0.138595193566
С	-1.378450863513	3.554768849553	-0.281620503507
С	-0.011399567024	0.306895651478	0.005807225046
Н	-0.031172605450	-0.779124395490	-0.001322378401
С	5.496958732299	0.519475315974	1.575167087384
Н	6.573984697324	0.427962693391	1.386285767422
Н	5.338373534635	0.345865342147	2.647318327356
С	4.991333032723	1.931619589251	1.236094168695
С	4.538422279308	-1.804751700275	1.430147824282
Н	4.459771059794	-1.678858578775	2.517792660295
Н	5.392978548240	-2.464737127534	1.236023261436
С	3.224217336650	-2.423596357142	0.913395121800
С	5.078887700675	-0.535124081259	-0.612234352986
Н	4.303336845804	-1.142528874069	-1.097440266544
Н	4.986144617863	0.490478436792	-0.994683047368
Н	2.462875782356	3.536666506954	0.544071409692
Н	-2.442384668512	3.576003706882	-0.510007875320
Cu	-2.880753357928	0.307902125951	-0.689537312641
0	-3.776325984147	1.984489344978	-0.864304914180
0	-5.790281008507	2.880431657100	-1.316138263185
0	-2.293503000923	-1.491295822388	-0.613873011632
0	-3.047615908839	-3.601883274716	-0.851704860442
Ν	-4.710340573306	-0.470757991913	-0.831117618703
С	-5.514281794046	0.508695506007	-1.571267626821
Н	-6.590455805636	0.396261866017	-1.389129636756
Н	-5.345414336933	0.342249551949	-2.643005653909
С	-5.035514594426	1.928518204308	-1.221455116889
С	-4.519553240805	-1.799858148779	-1.426263266584
Н	-4.448431378735	-1.672784521281	-2.514281605567
Н	-5.360971601496	-2.475673072900	-1.228706316374
С	-3.192177024458	-2.395282492887	-0.916689822426
С	-5.081865670592	-0.540041944499	0.615953310038
Н	-4.300148763719	-1.139860155329	1.100818580080
Н	-5.000355974559	0.486057107472	0.999508478167
Н	1.199212333528	5.512958565309	0.274573597502
С	-6.441211957383	-1.107063335135	0.890273828196
С	-7.561291805443	-0.270571166226	0.946649537911
С	-6.612576733991	-2.483284702197	1.075483872500
C	-8.828479868535	-0.799418170876	1.172709578457
C	-7.879387994082	-3.013161264275	1.301516045026
С	-8.988923161334	-2.172020350502	1.348206126667
Н	-7.432168338069	0.805673097095	0.818218113716

Н	-5.741298965667	-3.139837400158	1.047893747148
Н	-9.691205063063	-0.137444214536	1.217425497993
Н	-7.998844780246	-4.085030741829	1.446944002123
Н	-9.979232591153	-2.586100693706	1.528612476160
С	6.443785864438	-1.087802438450	-0.887683930615
С	6.628416594635	-2.462624785604	-1.070993260717
С	7.555292829478	-0.240258103864	-0.946996729608
С	7.900134189324	-2.980070848485	-1.297923050666
С	8.827436320416	-0.756729028583	-1.174017619967
С	9.001165766201	-2.127959051452	-1.347491714019
Н	5.763788467019	-3.127779449415	-1.040654833487
Н	7.415522639547	0.834989925992	-0.820892484795
Н	8.030068773811	-4.050878756693	-1.441886020113
Н	9.683495150394	-0.086350985267	-1.221283906353
Н	9.995256517004	-2.532421513477	-1.528737152542

Vb-p7

UM06I/6-31G* Free Energy: -5238.753962

Cu	-3.764349502	-0.001702379	-0.791616696
0	-3.625360891	1.875552885	-0.589795768
0	-4.875276871	3.749325042	-0.609605854
0	-4.223818668	-1.824654038	-1.074012278
0	-5.982414543	-3.156057737	-1.524920099
Ν	-5.731422281	0.311394711	-0.796896710
С	-1.427365505	-1.646396479	-0.483827600
Ν	2.077803772	-1.415571531	0.224086482
Ν	0.660813337	-3.068181911	-0.210969415
Н	0.327151455	-4.009327345	-0.367455366
С	-0.982200295	0.637468897	-0.174713488
н	-1.436316560	1.625257413	-0.167070463
Ν	-1.849623425	-0.374445413	-0.439978598
С	-0.089133367	-1.905490393	-0.245247822
С	0.820621717	-0.868920115	0.033919395
С	0.366682837	0.449252289	0.071573669
С	1.935229126	-2.722519459	0.072997396
Н	2.759165181	-3.421391875	0.170222802
С	-5.907656917	1.689059105	-1.274563581
Н	-6.872613664	2.118541970	-0.977565067
Н	-5.880538711	1.670484645	-2.371729334
С	-4.733320266	2.551687389	-0.773283668
С	-6.307101084	-0.778938858	-1.594356700
Н	-6.237711072	-0.494868203	-2.652354229
Н	-7.367499708	-0.951337918	-1.371135658
С	-5.476936348	-2.057776282	-1.380201154
С	-6.025446777	0.170219545	0.662775765
Н	-5.669793744	-0.829060951	0.948353924
Н	-5.391144896	0.907785020	1.172638498
Н	-2.182299181	-2.399110002	-0.705276579
Н	1.044525152	1.272480534	0.284345634
Cu	3.816768428	-0.616219536	0.697024735
0	3.243881158	1.186677532	0.775074233
0	4.027706625	3.263900378	1.148278927
0	4.665456620	-2.317116664	0.718211056
0	6.675999096	-3.275261892	1.048543364
Ν	5.654716470	0.122001937	0.843146130
С	5.501828956	1.410274808	1.532917345
Н	6.344573516	2.088304936	1.350152662
Н	5.468111688	1.212570233	2.612035015
С	4.166207554	2.055518072	1.115511215
С	6.447355769	-0.928058795	1.497108434
Н	6.295272626	-0.838884495	2.580510535
Н	7.522879945	-0.822829168	1.308188541
С	5.935066699	-2.309698306	1.047834754
С	6.001823527	0.285087607	-0.603273325
Н	5.890018684	-0.709470586	-1.055839386
Н	5.225637924	0.934545722	-1.029948985
С	-7.465000005	0.352446456	1.035194841
С	-7.960707554	1.621134184	1.354998339
С	-8.337876526	-0.740801605	1.051139159
С	-9.304120250	1.794852639	1.673905667
С	-9.681412462	-0.568165238	1.369944714
С	-10.166229613	0.700592995	1.679591841
Н	-7.281768283	2.475629826	1.359593067

Н	-7.954089480	-1.735578811	0.817658986
Н	-9.676704769	2.786306805	1.923946660
Н	-10.349454405	-1.427202578	1.381954524
Н	-11.216173223	0.835704298	1.932661369
С	7.368136527	0.841751241	-0.862600057
С	8.469771738	-0.010976530	-0.992591953
С	7.564261832	2.223629873	-0.960178266
С	9.743627402	0.507693118	-1.204218168
С	8.837720445	2.743199442	-1.171867562
С	9.929003897	1.885606569	-1.291656399
Н	8.321282153	-1.090745436	-0.934191544
Н	6.706670257	2.893537437	-0.876055534
Н	10.591985164	-0.166169412	-1.306801583
Н	8.976608759	3.819741311	-1.249136911
Н	10.924557813	2.291538076	-1.460868878
S4. Additional Crystal data and Structural information concerning [Cu(TEBIDA)(H7azain)(H₂O)]·3H₂O (**1**)

Table S4.1. Crystal data and structure refinement for [Cu(TEBIDA)(H7azain)(H₂O)]·3H₂O

Identification code	09jnac551	
Empirical formula	C15 H27 Cu N3 O8	
Formula weight	440.94	
Temperature	110(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Orthorhombic, Pcc	n
Unit cell dimensions	a = 34.292(18) Å b = 9.563(5) Å c = 11.407(6) Å	alpha = 90 deg. beta = 90 deg. gamma = 90 deg.
Volume	3741(3) A^3	
Z, Calculated density	8, 1.566 Mg/m^3	
Absorption coefficient	1.216 mm^-1	
F(000)	1848	
Crystal size	0.23 x 0.22 x 0.04 mi	n
Theta range for data collection	1.19 to 26.02 deg.	
Limiting indices	0<=h<=42, 0<=k<=1	1, 0<=l<=14
Reflections collected / unique	18037 / 3676 [R(int)	= 0.0564]
Completeness to theta = 26.02	99.8 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.9530 and 0.7672	
Refinement method	Full-matrix least-squa	ares on F^2
Data / restraints / parameters	3676 / 6 / 244	
Goodness-of-fit on F^2	1.389	
Final R indices [I>2sigma(I)]	R1 = 0.0761, wR2 =	0.2011
R indices (all data)	R1 = 0.0934, wR2 =	0.2125
Largest diff. peak and hole	0.592 and -1.377 e.A	^-3

Cu(1)-O(21)	1.921(4)	
Cu(1)-O(11)	1.927(4)	
Cu(1)-N(3)	1.971(5)	
Cu(1)-N(10)	2.026(5)	
Cu(1)-O(1)	2.302(5)	
O(21)-Cu(1)-O(11)	170.12(18)	
O(21)-Cu(1)-N(3)	93.80(18)	
O(11)-Cu(1)-N(3)	95.31(18)	
O(21)-Cu(1)-N(10)	85.88(18)	
O(11)-Cu(1)-N(10)	87.20(18)	
N(3)-Cu(1)-N(10)	157.3(2)	
O(21)-Cu(1)-O(1)	87.38(17)	
O(11)-Cu(1)-O(1)	86.83(17)	
N(3)-Cu(1)-O(1)	103.09(18)	
N(10)-Cu(1)-O(1)	99.56(18)	

Table S4.2. Selected bond lengths [Å] and angles [deg] for [Cu(TEBIDA)(H7azain)(H₂O)]·3H₂O

Table S4.3. Hydrogen bonds for [Cu(TEBIDA)(H7azain)(H₂O)]·3H₂O [Å and deg.]

d(D-H)	d(HA)	d(DA)	<(DHA)	
0.97	1.86	2.799(6)	162.4	
0.83	2.03	2.828(6)	159.2	
0.90	2.29	2.883(7)	123.2	
0.83	1.89	2.718(6)	171.4	
0.83	1.95	2.710(7)	150.2	
0.85	2.06	2.840(7)	151.3	
0.85	1.83	2.680(8)	172.4	
	d(D-H) 0.97 0.83 0.90 0.83 0.83 0.83 0.85 0.85	d(D-H) d(HA) 0.97 1.86 0.83 2.03 0.90 2.29 0.83 1.89 0.83 1.95 0.85 2.06 0.85 1.83	d(D-H)d(HA)d(DA)0.971.862.799(6)0.832.032.828(6)0.902.292.883(7)0.831.892.718(6)0.831.952.710(7)0.852.062.840(7)0.851.832.680(8)	d(D-H)d(HA)d(DA)<(DHA)0.971.862.799(6)162.40.832.032.828(6)159.20.902.292.883(7)123.20.831.892.718(6)171.40.831.952.710(7)150.20.852.062.840(7)151.30.851.832.680(8)172.4

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2 #2 x,-y+1/2,z-1/2 #3 -x+1/2,y,z-1/2

Figure and comments S4.4. Complex molecule of $[Cu(TEBIDA)(H7azain)(H_2O)]\cdot 3H_2O$ (left) and view of the 3D network in the ba plane (right).

In the crystal (orthorhombic, Pccn), apical aqua ligands use their H atoms to build intermolecular H-bonds, giving rise to chains that run along the c axis. These former chains are further connected by pi,pi-stacking interactions between adjacent H7azain ligands, involving both aromatic moieties, to build layers. Thereby, each H7azain ligand stacks its six-membered ring with the five- and six-membered rings of one adjacent H7azain ligand (see Table S14.1). Finally, the 3D architecture is accomplished by H-bonding interactions that involve the non-coordinated water molecules (see Table S4.3).

S4. Additional Crystal data and Structural information concerning $\{[Cu(FBIDA)(H7azain)] \cdot 2H_2O\}_n$ (2).

Table S5.1. Crystal data and structure refinement for ${[Cu(FBIDA)(H7azain)] \cdot 2H_2O_n}$

Identification code	c554	
Empirical formula	C36 H36 Cu2 F2 N6 O10)
Formula weight	877.79	
Temperature	100(2) K	
Wavelength	0.73780 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 37.308(8) Å b = 8.0550(16) Å c = 25.933(5) Å	α = 90 deg. β = 111.42(3) deg. γ = 90° deg.
Volume	7255(3) Å ³	
Z	8	
Density (calculated)	1.607 Mg/m ³	
Absorption coefficient	1.251 mm ⁻¹	
F(000)	3600	
Theta range for data collection	2.43 to 28.14°.	
Index ranges	0<=h<=46, 0<=k<=9, -32	<= <=30
Reflections collected	7249 / 7249 [R(int) = 0.00	[000]
Completeness to theta = 28.14°	97.9 %	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	7249 / 0 / 505	
Goodness-of-fit on F ²	1.078	
Final R indices [I>2sigma(I)]	R1 = 0.0414, wR2 = 0.11	52
R indices (all data)	R1 = 0.0518, wR2 = 0.11	98
Largest diff. peak and hole	1.040 and -1.193 e.Å ⁻³	

Cu(1)-O(21)	1.9341(17)
Cu(1)-O(11)	1.9341(18)
Cu(1)-N(3)	1.996(2)
Cu(1)-N(10)	2.014(2)
Cu(1)-O(12A)#1	2.3764(19)
Cu(2)-O(21A)	1.9314(17)
Cu(2)-O(11A)	1.9322(17)
Cu(2)-N(3A)	1.988(2)
Cu(2)-N(10A)	2.010(2)
Cu(2)-O(12)	2.374(2)
., .,	
O(4)-Cu(1)-O(8)	169.87(7)
O(21)-Cu(1)-O(11)	169.84(7)
O(21)-Cu(1)-N(3)	95.76(8)
O(11)-Cu(1)-N(3)	94.38(8)
O(21)-Cu(1)-N(10)	85.71(8)
O(11)-Cu(1)-N(10)	84.36(8)
N(3)-Cu(1)-N(10)	163.89(9)
O(21)-Cu(1)-O(12A)#1	91.17(7)
O(11)-Cu(1)-O(12A)#1	86.05(7)
N(3)-Cu(1)-O(12A)#1	109.60(7)
N(10)-Cu(1)-O(12A)#1	86.37(8)
O(21A)-Cu(2)-O(11A)	170.12(7)
O(21A)-Cu(2)-N(3A)	95.86(8)
O(11A)-Cu(2)-N(3A)	94.02(8)
O(21A)-Cu(2)-N(10A)	85.87(8)
O(11A)-Cu(2)-N(10A)	84.74(8)
N(3A)-Cu(2)-N(10A)	163.18(8)
O(21A)-Cu(2)-O(12)	90.16(7)
O(11A)-Cu(2)-O(12)	86.06(7)
N(3A)-Cu(2)-O(12)	111.21(8)
N(10A)-Cu(2)-O(12)	85.48(8)

Table S5.2. Selected bond lengths [Å] and angles [deg] for ${[Cu(FBIDA)(H7azain)] \cdot 2H_2O_n}$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(9A)-H(9A)O(21)#1	0.92	2.28	2.933(3)	127.4
N(9A)-H(9A)O(11A)	0.92	2.19	2.876(3)	130.9
N(9)-H(9)O(11)	0.91	2.30	2.928(3)	126.7
N(9)-H(9)O(21A)	0.91	2.18	2.900(3)	136.2
Non-classical H-bonds				
C(9)H(9)F(35)#2	0.95	2.34	3.138(3)	141.0
C(6A)H(6A)F(35A)#3	3 0.95	2.38	3.318(4)	169.5
C(8A)H(8A)F(35A)#4	4 0.95	2.41	3.178(4)	137.4

Table S5.3. Hydrogen bonds for {[Cu(FBIDA)(H7azain)]·2H₂O}_n [Å and deg.]

Symmetry transformations used to generate equivalent atoms: #1 x,1+y,z #2 x,1-y,1/2+z #3 3/2-x,3/2-y,2-z #4 x,2-y,-1/2+z

Figure and comments S5.4. View of the 3D network in the ac plane.

Compound 2 crystallizes in the monoclinic system (space group C2/c). In the crystal, the polymeric chains extend throughout the b axis connecting to each other by means of non-coordinated water molecules. Hence, the resulting 2D layer presents a honeycomb-like topology

where the non-coordinated molecules are hosted into channels that extend along b axis. Weak non-classical intermolecular H-bonding interactions, that involve the fluoro atoms, also contribute to the crystal structure associating layers in the 3D network (see Table S5.3). Despite the presence of aromatic moieties in the both FBIDA and H7azain ligands, no pi,pi-stacking interactions are observed in this crystal.

S6. Additional Crystal data and Structural information concerning $\label{eq:cucBIDA} \{ [Cu(CBIDA)(H4abim)] \cdot 2H_2O \}_n \, \textbf{(3)} \$

Table S6.1. Crystal data and structure refinement for {[Cu(CBIDA)(H4abim)]·2H₂O}_n

Identification code	c482	
Empirical formula	C17 H19 CI Cu N4 O6	
Formula weight	474.35	
Temperature	100(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P 21/c	
Unit cell dimensions	$\begin{array}{ll} a = 13.418(4) \ \text{\AA} & \alpha = 90 \ \text{deg.} \\ b = 7.707(2) \ \text{\AA} & \beta = 106.648(13) \ \text{deg.} \\ c = 19.083(5) \ \text{\AA} & \gamma = 90^{\circ} \ \text{deg.} \end{array}$	
Volume	1890.7(9) A^3	
Z, Calculated density	4, 1.666 Mg/m^3	
Absorption coefficient	1.341 mm^-1	
F(000)	972	
Crystal size	0.34 x 0.04 x 0.01 mm	
Theta range for data collection	1.58 to 27.26 deg.	
Limiting indices	-17<=h<=16, 0<=k<=9, 0<=l<=24	
Reflections collected / unique	20471 / 4314 [R(int) = 0.0981]	
Completeness to theta = 27.26	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9867 and 0.6585	
Data / restraints / parameters	4314 / 0 / 263	
Goodness-of-fit on F^2	1.037	
Final R indices [I>2sigma(I)]	R1 = 0.0722, wR2 = 0.1945	
R indices (all data)	R1 = 0.0896, wR2 = 0.2107	
Extinction coefficient	0.0021(13)	
Largest diff. peak and hole	1.536 and -1.771 e.A^-3	

Table S6.2. Selected bond lengths [Å] and angles [deg] for {[Cu(CBIDA)(H4abim)]·2H₂O}_n

Cu(1)-O(11)	1.949(3)
Cu(1)-N(7)	1.945(4)
Cu(1)-O(21)	1.957(3)
Cu(1)-N(10)	1.984(4)
Cu(1)-O(22)#1	2.261(4)
O(11)-Cu(1)-N(7)	93.21(16)
O(11)-Cu(1)-O(21)	168.58(17)
N(7)-Cu(1)-O(21)	97.06(16)
O(11)-Cu(1)-N(10)	85.13(16)
N(7)-Cu(1)-N(10)	168.15(17)
O(21)-Cu(1)-N(10)	83.80(16)
O(11)-Cu(1)-O(22)#1	95.24(14)
N(7)-Cu(1)-O(22)#1	103.83(16)
O(21)-Cu(1)-O(22)#1	87.15(14)
N(10)-Cu(1)-O(22)#1	88.01(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z+1/2

Table S6.3.	Hydrogen bon	ls for {[Cu(CBIE)(H4abim)]·2	H_2O_n [Å and deg.]
-------------	--------------	------------------	--------------	-----------------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(9)-H(9A)O(12)#3	0.88	1.86	2.739(7)	173.6
O(1)-H(1A)N(3)#4	0.85	2.08	2.880(8)	156.6
O(1)-H(1B)O(2)	0.85	1.86	2.707(8)	170.9
O(2)-H(2A)O(1)#5	0.85	1.89	2.691(8)	155.7
O(2)-H(2B)O(12)	0.86	2.10	2.7489(7)	132.7

Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z+1/2 #2 -x,y-1/2,-z+1/2 #3 -x,-y+1,-z #4 x+1,-y+1/2,z+1/2 #5 -x+1,y+1/2,z+1/2 Figure and comments S6.4. Fragment of the polymer $\{[Cu(CBIDA)(H4abim)]\cdot 2H_2O\}_n$ (left) and view of the 3D network in the bc plane (right).

In the crystal (monoclinic, P2₁/c), the water molecules build helical motifs running along the 2₁ screw axes addressing the same direction than the polymeric chains. These latter chains associate each other through inter-molecular H-bonds that involve the N9-H groups of H4abim. Finally, the 3D network is reached thanks to H-bonding interactions that comprises the non-coordinated water molecules (see Table S6.3).

S7. Additional Crystal data and Structural information concerning [Cu(H₂EDTA)(H4abim)]·0.5H₂O (**4**)

Table S7.1. Crystal data and structure refinement for [Cu(H₂EDTA)(H4abim)]·0.5H₂O

Identification code	c555	
Empirical formula	C32 H40 Cu2 N10 O17	
Formula weight	963.82	
Temperature	100(2) K	
Wavelength	0.7380 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.270(5) Å b = 8.502(5) Å c = 14.780(5) Å	$\begin{array}{l} \alpha = 90.628(5) \mbox{ deg.} \\ \beta = 92.540(5) \mbox{ deg.} \\ \gamma = 97.828(5) \mbox{ deg.} \end{array}$
Volume	903.9(3) Å ³	
Z; Density (calculated)	1; 1.770 Mg/m ³	
Absorption coefficient	1.272 mm ⁻¹	
F(000)	496	
Theta range for data collection	3.84 to 27.46°.	
Index ranges	0<=h<=8, -10<=k<=10, -	17<= <=17
Reflections collected	3381	
Independent reflections	3381 [R(int) = 0.0000]	
Completeness to theta = 26.25°	91.6 %	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3381 / 0 / 284	
Goodness-of-fit on F ²	1.041	
Final R indices [I>2sigma(I)]	R1 = 0.0326, wR2 = 0.08	59
R indices (all data)	R1 = 0.0329, wR2 = 0.08	60
Largest diff. peak and hole	0.442 and -1.004 e.Å ⁻³	

Cu(1)-O(21)	1.9599(17)
Cu(1)-O(11)	1.9612(17)
Cu(1)-N(9)	1.9751(18)
Cu(1)-N(10)	2.0793(18)
Cu(1)-N(20)	2.3609(17)
Cu(1)-O(16)	2.583(2)
O(21)-Cu(1)-O(11)	173.25(6)
O(21)-Cu(1)-N(9)	89.40(8)
O(11)-Cu(1)-N(9)	96.81(8)
O(21)-Cu(1)-N(10)	89.99(7)
O(11)-Cu(1)-N(10)	85.03(7)
N(9)-Cu(1)-N(10)	160.61(7)
O(21)-Cu(1)-N(20)	79.08(6)
O(11)-Cu(1)-N(20)	95.71(7)
N(9)-Cu(1)-N(20)	116.50(7)
N(10)-Cu(1)-N(20)	82.36(6)

Table S7.2. Selected bond lengths [Å] and angles [deg] for [Cu(H₂EDTA)(H4abim)]·0.5H₂O

Table S7.3. Hydrogen bonds for [Cu(H₂EDTA)(H4abim)]·0.5H₂O [Å and deg.]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(17)-H(17)O(12)#1	0.84	1.70	2.535(2)	173.4	
O(26)-H(26)O(22)#2	0.84	1.73	2.561(2)	170.7	
N(7)-H(7)O(22)#3	0.88	2.17	2.946(2)	147.5	
O(1)-H(1A)O(25)#5	0.87	2.29	2.948(5)	132.9	
O(1)-H(1B)O(26)	0.86	2.29	2.941(5)	132.6	

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 x-1,y,z #3 -x+1,-y,-z #4 -x+1,-y+1,-z #5 -x,-y-1,-z+1 Figure and comments S7.4. 2D layers in the crystal of compound **4** and detail of pi,pi-stacking interactions between anti-parallel H4abim ligands.

Compound 4 crystallizes in the triclinic P-1 space group. In the crystal, pi,pi-stacking interactions among anti-parallel H4abim ligands build 1D ribbons along the a axis (see Table S13.2), which are further intra-stabilized by inter-molecular H-bonds involving the N7-H group of H4abim and the free carboxylic groups (see Table S7.3). The referred ribbons connect to each other by means of non-coordinated water molecules leading to corrugated layers that are further connected by hydrophobic interactions giving rise to the 3D array.

S8. Additional Crystal data and Structural information concerning {[Cu₂(IDA)₂(μ_2 -N7,N9-H5abim)]·H₂O}_n (**5**)

Table S8.1. Crystal data and structure refinement for ${[Cu_2(IDA)_2(\mu_2-N7,N9-H5abim)]} \cdot H_2O_n$

Identification code	c607		
Empirical formula	C14 H17 Cu2 N5 O9		
Formula weight	526.41		
Temperature	100(2) K		
Wavelength	0.73800 Å		
Crystal system	Orthorhombic		
Space group	Cmc21		
Unit cell dimensions	$a = 15.401(3)$ Å $\alpha = 9$ $b = 14.480(3)$ Å $\beta = 9$ $c = 8.1120(16)$ Å $\gamma = 9$	00 deg. 00 deg. 00 deg.	
Volume	1809.0(6) Å ³		
Z; Density (calculated)	4; 1.933 Mg/m ³		
Absorption coefficient	2.415 mm ⁻¹		
F(000)	1064		
Crystal size	0.08 x 0.02 x 0.02 mm ³		
Theta range for data collection	collection 4.60 to 28.21°.		
Index ranges	0<=h<=19, 0<=k<=18, -9<=l<=0		
Reflections collected	1048		
Independent reflections	1048 [R(int) = 0.0000]		
Completeness to theta = 28.21°	94.7 %		
Data / restraints / parameters	1048 / 4 / 140		
Goodness-of-fit on F ²	1.037		
Final R indices [I>2sigma(I)]	R1 = 0.0460, wR2 = 0.1278		
R indices (all data)	R1 = 0.0463, wR2 = 0.1286		
Extinction coefficient	0.033(4)		
Largest diff. peak and hole	0.682 and -0.673 e.Å ⁻³		

Cu(1)-O(8)	1.947(5)
Cu(1)-N(1)	1.969(6)
Cu(1)-N(11)	1.977(5)
Cu(1)-O(4)	1.985(5)
Cu(1)-O(5)#1	2.507(4)
Cu(1)-O(9)#2	2.524(5)
O(8)-Cu(1)-N(1)	84.7(3)
O(8)-Cu(1)-N(11)	98.9(2)
N(1)-Cu(1)-N(11)	176.3(3)
O(8)-Cu(1)-O(4)	166.85(17)
N(1)-Cu(1)-O(4)	83.1(3)
N(11)-Cu(1)-O(4)	93.3(2)
O(8)-Cu(1)-O(5)#1	84.62(18)
N(1)-Cu(1)-O(5)#1	95.8(2)
N(11)-Cu(1)-O(5)#1	85.67(18)
O(4)-Cu(1)-O(5)#1	101.44(18)
O(8)-Cu(1)-O(9)#2	85.55(18)
N(1)-Cu(1)-O(9)#2	81.18(19)
N(11)-Cu(1)-O(9)#2	97.89(17)
O(4)-Cu(1)-O(9)#2	87.78(18)
O(5)#1-Cu(1)-O(9)#2	170.0(2)

Table S8.2. Selected bond lengths [Å] and angles [deg] for {[Cu_2(IDA)_2(\mu_2-N7,N9-H5abim)]·H_2O}_n

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,z+1/2 #2 x,-y,z-1/2

Table S8.3.	Hydrogen b	onds for {[Cu	I₂(IDA)₂(µ₂-N	7,N9-H5abim)]·H₂O}₀ [Å an	id deg.]
			·2\·=··/2\r-2··		<u> </u>	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1A)O(12)	0.86	2.03	2.885(7)	170.1	
N(1)-H(1)O(21)#4	0.85	2.09	2.910(8)	163.9	

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,z+1/2 #2 x,-y,z-1/2 #3 -x+1,y,z #4 x,y,z-1 Figure and comments S8.4. Fragment of the polymer $\{[Cu_2(IDA)_2(\mu_2-N7,N9-H5abim)]\cdot H_2O\}_n$ (left) and view of the 3D network in the ba plane (right).

Compound 5 crystallizes in the orthorhombic Cmc2₁ space group. In the crystal, the dinuclear units extend leading to 3D network which is reinforced by H-bonding interactions that involve the N1-H group of H5abim, the non-coordinated water molecule and the N-H group of the IDA moiety (see Table S8.3), contributing massively to the stability of the 3D network.

S9. Additional Crystal data and Structural information concerning $[Cu_2(NBzIDA)_2(\mu_2 - N7,N9-H5abim)(H_2O)_2] \cdot H_2O$ (6).

Tab H5a	ble S9.1. abim)(H₂O)₂]·H	Crystal I ₂ O	data	and	structure	refinement	for	[Cu ₂ (NBzIDA) ₂ (µ ₂ -N7,N9-
	Identification	code			c484			
	Empirical form	nula			C28 H3	3 Cu2 N5 O1	1	
	Formula weig	ht			742.680	I		
	Temperature				293(2)	к		
	Wavelength				1.54178	Å		
	Crystal syster	n			Monocli	nic		
	Space group				C2/c			
	Unit cell dime	nsions			a = 17.6 b = 10.0 c = 20.9	9777(11) Å 9875(6) Å 9883(13) Å		α = 90 deg. β = 110.719(2) deg. γ = 90 deg.
	Volume				3500.7(4) Å ³		
	Z; Density (ca	alculated)			4; 1.44;	3 Mg/m3		
	Absorption cc	oefficient			2.056 m	ım-1		
	F(000)				1568			
	Crystal size				0.12 x 0	.10 x 0.10 mr	n3	
	Theta range f	or data co	llectior	ı	5.65 to (66.49∞.		
	Index ranges				-20<=h<	<=20, -11<=k∙	<=11,	-24<=l<=24
	Reflections co	ollected			19804 /	2912 [R(int)	= 0.0	530]
	Completenes	s to theta	= 66.49)∞	94.9 %			
	Absorption co	orrection			Semi-er	npirical from	equiv	alents
	Max. and min	. transmis	sion		0.8208 a	and 0.7905		
	Data / restrair	nts / paran	neters		2912 / 1	99 / 278		
	Goodness-of-	fit on F2			1.076			
	Final R indice	es [I>2sign	na(I)]		R1 = 0.0	0463, wR2 = 0	0.128	5
	R indices (all	data)			R1 = 0.0	0482, wR2 = 0	0.130	4
	Largest diff. p	eak and h	ole		0.426 ai 89	nd -0.323 e. Á	∖ -3	

$O_{11}(4) O(24)$	4.0707(40)	
Cu(1)-O(21)	1.9797(19)	
Cu(1)-O(11)	1.969(2)	
Cu(1)-N(10)	2.014(2)	
Cu(1)-O(1)	2.273(2)	
Cu(1)-N(9)	1.960(2)	
O(21) Cu(1) N(10)	82.64(8)	
O(21)-O(1)-IN(10)	82.04(8)	
O(21)- $Cu(1)$ - $O(1)$	92.68(9)	
O(11)-Cu(1)-O(21)	165.78(9)	
O(11)-Cu(1)-N(10)	83.51(8)	
O(11)-Cu(1)-O(1)	92.08(9)	
N(10)-Cu(1)-O(1)	96.45(9)	
N(9)-Cu(1)-O(21)	94.30(8)	
N(9)-Cu(1)-O(11)	98.31(8)	
N(9)-Cu(1)-N(10)	165.50(10)	
N(9)-Cu(1)-O(1)	97.86(10)	

Table S9.2. Selected bond lengths [Å] and angles [deg] for $[Cu_2(NBzIDA)_2(\mu_2-N7,N9-H5abim)(H_2O)_2]\cdot H_2O$

Table S9.3. Hydrogen bonds for [Cu₂(NBzIDA)₂(µ₂-N7,N9-H5abim)(H₂O)₂]·H₂O [Å and deg.]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1a)O(22)#2	0.87	1.93	2.774(3)	162.6
O(1)-H(1b)O(12)#3	0.87	1.96	2.734(3)	147.8
C(1)-H(1c)O(22)#4	0.93	2.08	2.886(4)	144.5
N(1)-H(1d)O(22)#4	0.86	2.14	2.886(4)	145.6
O(2)-H(2a)O(2A)	0.85	2.09	2.877(12)	153.1
Non-classical H-bonds				
C(8)H(8)…O(21)	0.93	2.50	2.997(3)	113.3

```
Symmetry transformations used to generate equivalent atoms:
```

#1 -x+1,y,-z+3/2 #2 -x+3/2,y-1/2,-z+3/2 #3 -x+3/2,y+1/2,-z+3/2 #4 x,y-1,z

Figure and comments S9.4. View in the ba plane of the 3D architecture showing the channels that host solvent molecules.

In the crystal (monoclinic, C2/c), the dinuclear units build ribbons connected through intermolecular H-bonding interactions along the b axis that involve the N1-H group of H5abim ligand (see Table S9.3). Note that N1-H is delocalised in two positions, thereby the O22-acceptor of each NBzIDA moiety is involved 50% of the time in this interaction. These ribbons are further connected by symmetry related H-bonding interaction that involve the apical aqua ligands of both moieties, leading to 2D layers. Finally, adjacent layers connect each other by very weak, but massive, pi,pi-stacking interactions among the NBzIDA moieties of both disordered positions (see Table S14.3), accomplishing the 3D array. Moreover, channels are built in the honeycomb-like structure that extends throughout the c axis, in which the non-coordinated water molecules are hosted.

S10. Additional Crystal data and Structural information concerning [Cu(IDA)(H7deaA)(H₂O)]·2H₂O (**7**)

Table S10.1. Crystal data and structure refinement for [Cu(IDA)(H7deaA)(H2O)]·2H2O

Identification code	c606			
Empirical formula	C10 H17 Cu N5 O7			
Formula weight	382.83			
Temperature	120(2) K			
Wavelength	1.54178 Å			
Crystal system, Space group	Triclinic, P-1			
Unit cell dimensions	a = 6.7944(11) Å b = 7.8048(12) Å c = 14.257(2) Å	$\begin{array}{l} \alpha = 90.174(8)^{\circ}.\\ \beta = 92.347(8)^{\circ}.\\ \gamma = 110.213(7)^{\circ}. \end{array}$		
Volume	708.75(19) Å3			
Z; Density (calculated)	2; 1.794 Mg/m3			
Absorption coefficient	2.645 mm-1			
F(000)	394			
Crystal size	0.10 x 0.08 x 0.04 mm3			
Theta range for data collection	3.10 to 66.49°.			
Index ranges	-8<=h<=8, -9<=k<=9, -16	S<=l<=16		
Reflections collected	9355 / 2344 [R(int) = 0.0595]			
Completeness to theta = 66.49°	94.2 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.9016 and 0.7779			
Refinement method	Full-matrix least-squares	on F2		
Data / restraints / parameters	2344 / 0 / 208			
Goodness-of-fit on F2	1.070			
Final R indices [I>2sigma(I)]	R1 = 0.0428, wR2 = 0.11	31		
R indices (all data)	R1 = 0.0491, wR2 = 0.11	80		
Largest diff. peak and hole 0.898 and -0.413 e.Å-3				

Table S10.2. Selected bond lengths [Å] and angles [deg] for [Cu(IDA)(H	I7deaA)(H ₂ O)]·2H ₂ O
--	--

Cu(1)-N(3)	1.964(3)
Cu(1)-O(11)	1.973(2)
Cu(1)-N(10)	1.978(3)
Cu(1)-O(21)	1.984(2)
Cu(1)-O(1)	2.273(2)
N(3)-Cu(1)-O(11)	95.52(10)
N(3)-Cu(1)-N(10)	165.48(11)
O(11)-Cu(1)-N(10)	83.99(10)
N(3)-Cu(1)-O(21)	96.63(10)
O(11)-Cu(1)-O(21)	167.68(9)
N(10)-Cu(1)-O(21)	83.73(11)
N(3)-Cu(1)-O(1)	98.65(10)
O(11)-Cu(1)-O(1)	92.13(9)
N(10)-Cu(1)-O(1)	95.87(11)
O(21)-Cu(1)-O(1)	88.11(9)

Table S10.3. Hydrogen bonds for [Cu(IDA)(H7deaA)(H₂O)]·2H₂O [Å and deg.]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
N(9)-H(9)O(21)	0.88	2.46	3.011(3)	121.2		
N(9)-H(9)O(12)#1	0.88	2.58	3.179(4)	126.4		
N(6)-H(6A)O(3)#2	0.88	2.35	3.053(4)	136.5		
N(6)-H(6B)O(21)#3	0.88	2.41	3.057(3)	130.2		
O(1)-H(1A)O(12)#4	0.87	1.99	2.838(3)	166.7		
O(1)-H(1B)N(1)#2	0.87	1.91	2.778(3)	172.0		
O(2)-H(2C)O(12)#4	0.83	2.03	2.839(4)	162.6		
O(2)-H(2D)O(22)#5	0.84	1.95	2.774(4)	163.7		
O(3)-H(3A)O(22)#6	0.85	1.92	2.748(4)	164.8		
O(3)-H(3B)O(2)	0.86	1.90	2.729(4)	163.5		
Symmetry transformations used to generate equivalent atoms: #1 x+1,y+1,z #2 -x+1,-y+1,-z+1 #3 -x+2,-y+2,-z+1 #4 x+1,y,z #5 -x+2,-y+1,-z+2 #6 x-						

^{1,}y-1,z

Figure and comments S10.4. Complex molecule of $[Cu(IDA)(H7deaA)(H_2O)]$ ·2H₂O (left) and detail of pi,pi-stacking interactions within the 1D chains (right)

In the crystal (triclinic P-1), pi,pi-stacking interaction between anti-parallel H7deaA ligands connect the complex molecules leading to multi-stacked chains that extend along the a axis (see Table S14.4). Aside, symmetry related inter-molecular H-bonds contribute to the stability of such chains that are futher connected by inter-molecular H-bonds building layers. Additional H-bonds that involve the non-coordinated water molecules build the 3D architecture (see Table S10.3).

S11. Additional Crystal data and Structural information concerning [Cu₂(MIDA)₂(μ₂-N1-N3-H7deaA)(H₂O)₂]·5H₂O (**8**)

Table S11.1. Crystal data and structure refinement for $[Cu_2(MIDA)_2(\mu_2\text{-}N1\text{-}N3\text{-}H7deaA)(H_2O)_2]\text{-}5H_2O$

Identification code	c618		
Empirical formula	C16 H34 Cu2 N6 O15		
Formula weight	677.57		
Temperature	100(2) K		
Wavelength	0.73780 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 6.9590(14) Å b = 13.536(3) Å c = 14.250(3) Å		
Volume	1300.7(4) Å ³		
Z; Density (calculated)	2; 1.730 Mg/m ³		
Absorption coefficient	1.718 mm ⁻¹		
F(000)	700		
Theta range for data collection	1.57 to 26.20°.		
Index ranges	0<=h<=8, -16<=k<=16, -7	17<= <=17	
Reflections collected	19103 / 4975 [R(int) = 0.0)777]	
Completeness to theta = 26.20°	93.4 %		
Data / restraints / parameters	4975 / 3 / 371		
Goodness-of-fit on F ²	1.039		
Final R indices [I>2sigma(I)]	R1 = 0.0647, wR2 = 0.18	02	
R indices (all data)	R1 = 0.0731, wR2 = 0.18	81	
Extinction coefficient	0.0109(19)		
Largest diff. peak and hole	0.921 and -1.237 e.Å ⁻³		

Cu(1)-O(11)	1.968(3)	
Cu(1)-O(21)	1.985(3)	
Cu(1)-N(10)	1.988(4)	
Cu(1)-N(1)	1.990(4)	
Cu(1)-O(1)	2.225(4)	
Cu(2)-O(41)	1.955(3)	
Cu(2)-O(31)	1.966(3)	
Cu(2)-N(3)	1.984(4)	
Cu(2)-N(30)	2.010(4)	
Cu(2)-O(2)	2.267(4)	
O(11)-Cu(1)-O(21)	165.80(14)	
O(11)-Cu(1)-N(10)	83.23(16)	
O(21)-Cu(1)-N(10)	83.08(15)	
O(11)-Cu(1)-N(1)	95.78(15)	
O(21)-Cu(1)-N(1)	96.39(14)	
N(10)-Cu(1)-N(1)	164.33(18)	
O(11)-Cu(1)-O(1)	97.33(15)	
O(21)-Cu(1)-O(1)	88.15(14)	
N(10)-Cu(1)-O(1)	97.49(18)	
N(1)-Cu(1)-O(1)	98.15(15)	
O(41)-Cu(2)-O(31)	167.18(13)	
O(41)-Cu(2)-N(3)	94.83(14)	
O(31)-Cu(2)-N(3)	95.50(14)	
O(41)-Cu(2)-N(30)	84.02(15)	
O(31)-Cu(2)-N(30)	84.18(15)	
N(3)-Cu(2)-N(30)	166.66(17)	
O(41)-Cu(2)-O(2)	93.29(14)	
O(31)-Cu(2)-O(2)	92.98(15)	
N(3)-Cu(2)-O(2)	96.92(15)	
N(30)-Cu(2)-O(2)	96.41(17)	

Table S11.2. Selected bond lengths [Å] and angles [deg] for $[Cu_2(MIDA)_2(\mu_2-N1-N3-H7deaA)(H_2O)_2]$ ·5H₂O

Table S11.3. Hydrogen bonds for $[Cu_2(MIDA)_2(\mu_2-N1-N3-H7deaA)(H_2O)_2]$ ·5H₂O [Å and deg.]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(6)-H(6A)O(41)#1	0.89	2.14	3.019(5)	169.5
N(6)-H(6B)O(11)	0.89	2.06	2.859(6)	149.4
N(9)-H(9)O(5)#2	0.96	1.81	2.745(5)	164.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z #2 x-1,y,z #3 x,y-1,z #4 -z,-y,-z

Figure and comments S11.4. Detail of multi-stacked chains in the crystal of compound 8.

Compound 8 crystallizes in the triclinic P-1 space group. In the crystal, pairs of complex molecules are associated by means of pi,pi-stacking interactions between anti-parallel H7deaA ligands as well as weak intermolecular H-bonds. The referred pairs of molecules are further associated by pi,pi-stacking interactions (see Table S14.5). Additional inter-molecular H-bonding interactions contribute to stabilise the 1D chains (see Table S11.3). The former chains build layers involving the apical aqua ligands into inter-molecular H-bonds. The 3D array is accomplished by additional H-bonding interactions that involve the non-coordinated water molecules (see Table S11.3).

S12. Additional Crystal data and Structural information concerning [Cu(NBzIDA)(H7deaA)]_n (**9**)

Table S12.1. Crystal data and structure refinement for [Cu(NBzIDA)(H7deaA)]_n

Identification code	c616			
Empirical formula	C17 H17 Cu N5 O4			
Formula weight	418.90			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	$a = 8.7865(18)$ Å $\alpha = 90$ deg. $b = 21.951(5)$ Å $\beta = 107.828(3)$ $c = 9.1750(19)$ Å $\gamma = 90$ deg.			
Volume	1684.7(6) Å ³			
Z; Density (calculated)	4; 1.652 Mg/m ³			
Absorption coefficient	1.333 mm ⁻¹			
F(000)	860			
Crystal size	0.10 x 0.08 x 0.06 mm ³			
Theta range for data collection	1.86 to 25.00°.			
Index ranges	-10<=h<=9, 0<=k<=26, 0	<=l<=10		
Reflections collected	3372 / 3465 [R(int) = 0.0	000]		
Completeness to theta = 25.00°	98.1 %			
Absorption correction	Semi-empirical from equi	valents		
Max. and min. transmission	0.7456 and 0.5110			
Data / restraints / parameters	3465 / 0 / 245			
Goodness-of-fit on F ²	1.051			
Final R indices [I>2sigma(I)]	R1 = 0.0499, wR2 = 0.12	62		
R indices (all data)	R1 = 0.0622, wR2 = 0.13	42		
Largest diff. peak and hole	0.786 and -0.405 e.Å ⁻³			

Table S12.2. Selected bond	lengths [Å] and	angles [deg] for	[Cu(NBzIDA)(H7deaA)]n
----------------------------	-----------------	------------------	-----------------------

1.957(3)
1.957(3)
1.971(3)
2.012(3)
2.244(3)
165.63(12)
98.65(13)
94.49(13)
82.67(13)
83.06(12)
162.50(14)
91.00(12)
93.34(11)
96.25(12)
101.19(12)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2

Table S12 3	Hydrogen	bonds for			(H7deaA)]	٢Å	and dea	1
	inyuruyen	DOLIUS IOI	Cuin	IDZIDA)	(III ueaA)]n	IA	anu uey.	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(6)-H(6A)O(22)#3	0.88	2.02	2.890(4)	171.9
N(6)-H(6B)O(12)#4	0.88	2.25	2.996(4)	142.9
N(9)-H(9)O(21)	0.88	2.24	2.847(4)	126.0
N(9)-H(9)O(11)#2	0.88	2.32	2.882(4)	122.1

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2 #2 x,-y+1/2,z+1/2 #3 x+1,-y+1/2,z-1/2 #4 x+1,-y+1/2,z+1/2 Figure and comments S12.4. View in the bc plane of the 3D architecture showing a detail of pi,pi-stacking interactions between adjacent NBzIDA ligands.

Compound 9 and 10 have similar structures and crystallize in the monoclinic P2₁/c space group. The polymeric chains are connected by means of inter-molecular H-bonds, involving the exocyclic amino group of H7deaA (see Table S12.3), generating a layer structure. In **9**, these layers connect to each other by weak pi,pi-stacking interactions between the benzyl-moieties of the NBzIDA ligand as well as weak C-H/pi interaction (see Table S14.6) leading to the 3D arrangement.

S13. Additional Crystal data and Structural information concerning [Cu(MEBIDA)(H7deaA)]_n (**10**)

Table S13.1. Crystal data and structure refinement for [Cu(MEBIDA)(H7deaA)]_n

Identification code	c613		
Empirical formula	C18 H19 Cu N5 O4		
Formula weight	432.92		
Temperature	100(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Monoclinic, P 21/c		
Unit cell dimensions	a = 8.8187(3) Å b = 24.1440(10) Å c = 8.9808(3) Å	α = 90 deg. β = 110.342(2) deg. γ = 90 deg.	
Volume	1792.93(11) A^3		
Z, Calculated density	4, 1.604 Mg/m^3		
Absorption coefficient	1.255 mm^-1		
F(000)	892		
Crystal size	0.79 x 0.04 x 0.03 mm		
Theta range for data collection	1.69 to 26.37 deg.		
Limiting indices	-11<=h<=10, 0<=k<=30,	0<=l<=11	
Reflections collected / unique	31679 / 3659 [R(int) = 0.0	0597]	
Completeness to theta = 26.37	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.9633 and 0.4371		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	3659 / 0 / 253		
Goodness-of-fit on F^2	1.181		
Final R indices [I>2sigma(I)]	R1 = 0.0501, wR2 = 0.09	906	
R indices (all data)	R1 = 0.0711, wR2 = 0.09	79	
Largest diff. peak and hole	0.779 and -0.571 e.A^-3		

Table S13.2.	Selected bond	lengths [Å] an	d angles [deg] for	[Cu(MEBIDA)(H	7deaA)] _n
--------------	---------------	----------------	--------------------	---------------	----------------------

Cu(1)-O(11) Cu(1)-O(21) Cu(1)-N(3) Cu(1)-N(10) Cu(1)-O(22)#1	1.946(2) 1.949(2) 1.987(3) 2.022(3) 2.309(2)
O(11)- $Cu(1)$ - $O(21)$	167 48(10)
O(11)-Cu(1)-N(3)	97 51(11)
O(21)- $Cu(1)$ - $N(3)$	95.01(10)
O(11)- $Cu(1)$ - $N(10)$	84 50(10)
O(21)- $Cu(1)$ - $N(10)$	83 40(10)
N(3)-Cu(1)-N(10)	162 96(12)
$\Omega(11)$ - $\Omega(11)$ - $\Omega(22)$ #1	88 16(9)
O(21)- $Cu(1)$ - $O(22)$ #1	91 23(9)
$N(3)_{(2)}(1)_{(2)}$	01.20(0) 04.87(10)
N(3) = Ou(1) = O(22) + 1 N(10) = Ou(1) = O(22) + 1	34.07(10) 102 12(10)
11(10)-Cu(1)-O(22)#1	102.12(10)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z+1/2

Table S13.3. Hydrogen bonds for [Cu(MEBIDA)(H7deaA)]_n [Å and deg.]

D-HA	d(D-H)		d(HA)	d(DA)	<(DHA)
N(6)-H(6A)O(22)#3	0.87	2.06	2.916(4)	168.8	
N(6)-H(6B)O(12)#4	0.88	2.15	2.938(4)	150.1	
N(9)-H(9)O(11)#2	0.88	2.21	2.835(4)	127.5	
N(9)-H(9)O(21)	0.88	2.27	2.899(4)	128.0	

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z+1/2 #2 x,-y+1/2,z-1/2 #3 x-1,-y+1/2,z+1/2 #4 x-1,-y+1/2,z-1/2

Plot S13.4. Fragment of the polymer [Cu(MEBIDA)(H7deaA)]_n (left) and view of the 3D network in the cb plane (right)

Compound **9** and **10** have similar structures and crystallize in the monoclinic P2₁/c space group. The polymeric chains are connected by means of inter-molecular H-bonds, involving the exocyclic amino group of H7deaA (see Table S13.3), generating a layer structure. In **10**, despite the presence of the N-benzyl moiety in MEBIDA, no relevant pi,pi-stacking interactions were observed, therefore the 3D structure is ruled by hydrophobic interactions.

S14. PI,PI-Stacking interactions analyses of compounds 1, 4, 6, 7, 8 and 9

Parameters for π,π -stacking interactions (illustrated for two six-membered aromatic rings).

Note that those interactions considered in this paper are highlighted in red within each

analysis.

S14.1. Analysis of compound **1** [Cu(TEBIDA)(H7azain)(H₂O)]·3H₂O

Ring 3 is the five-membered ring in the purine moiety of H7azain Ring 4 is the six-membered ring in the purine moiety of H7azain

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.										
Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Transformed J	-Plane P, Q,	R, S	Alpha	Beta	Gamma	Cgl_Perp	CgJ_f	Perp Slippage
Cg(3) [1] -> Cg(4) [5556.01] Cg(4) [1] -> Cg(3) [5556.01] Cg(4) [1] -> Cg(4) [5556.01]	3.5645 3.5645 3.5654	-0.1010 0.613 -0.0762 0.633 -0.1010 0.613	39 -0.7829 - 22 -0.7710 - 39 -0.7829 -	6.1688 6.1146 6.1688	1.896 1.896 0	16.89 18.51 17.15	18.51 16.89 17.15	3.3802 3.4107 3.4068	3.4107 3.3802 3.4068	1.051
Min or Max 3.5	64	0.03	4.25 78.47	-4.519	-4.827					

[5556] = -X,-Y,1-Z

S14.2. Analysis of compound 4 [Cu(H₂EDTA)(H4abim)]·0.5H₂O

Ring 5 is the five-membered ring in the purine moiety of H4abim Ring 6 is the six-membered ring in the purine moiety of H4abim

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.

=======================================	===========	===========	=====	==============	===================	======	======	============	==========	======
Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Transformed	d J-Plan	e P, Q, R, S	Alpha Beta (Gamma	Cgl_Pe	erp CgJ_Pe	rp Slippage	
Cg(2) [1]-> Cg(6) [1565.01]	5.567(4)	0.9924 -0.0	0428 -(0.1152 0.1711	63.75(12)	36.15	80.18	0.9497(10)	-4.4949(11)	
Cg(5) [1] -> Cg(5) [2555.01]	3.873(3)	-0.9945 0.0	0574 (0.0873 1.7003	0	28.59	28.59	-3.4006(12)	-3.4005(12)	1.853
Cg(5) [1] -> Cg(5) [2655.01]	4.032(3)	-0.9945 0.0	0574 (0.0873 -5.5299	0	18.24	18.24	3.8296(12)	3.8297(12)	1.262
Cg(5) [1] -> Cg(6) [2555.01]	3.566(3)	-0.9924 0.0	0428 (0.1152 1.6808	1.81(15)	16.74	18.54	-3.3811(12)	-3.4150(12)	
Cg(5) [1] -> Cg(6) [2655.01]	3.917(3)	-0.9924 0.0)428 (0.1152 -5.5342	1.81(15)	13.06	11.79	3.8338(12)	3.8152(12)	
Cg(6) [1] -> Cg(5) [2555.01]	3.566(3)	-0.9945 0.0	0574 (0.0873 1.7003	1.81(15)	18.54	16.74	-3.4150(12)	-3.3810(12)	
Cg(6) [1] -> $Cg(5)$ [2655.01]	3.917(3)	-0.9945 0.0	0574 (0.0873 -5.5299	1.81(15)	11.79	13.06	3.8152(12)	3.8339(12)	
Cg(6) [1] -> Cg(6) [2555.01]	4.375(3)	-0.9924 0.0	0428 (0.1152 1.6808	0	39.79	39.79	-3.3615(12)	-3.3615(12)	2.800
Cg(6) [1] -> Cg(6) [2655.01]	4.808(4)	-0.9924 0.0	0428 (0.1152 -5.5342	0	36.73	36.73	3.8534(12)	3.8534(12)	2.876
Min or Max 3.	566			0.00	11.79 80.18	-3.41	5 -4.49	95		

[1565] = X,1+Y,Z [2555] = -X,-Y,-Z [2655] = 1-X,-Y,-Z

S14.3. Analysis of compound **6** $[Cu_2(NBzIDA)_2(\mu_2-N7,N9-H5abim)(H_2O)_2] \cdot H_2O$

Ring 4 is the six-membered ring of the benzyl-group of the chelating ligand NBzBIDA in one disordered position Ring 5 is the six-membered ring of the benzyl-group of the chelating ligand NBzBIDA in the other disordered position (A)

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.								
Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Transformed J-Plane P, Q, R, S	Alpha Beta Gamma Cgl_Perp CgJ_Perp Slippage					
$\begin{array}{c} Cg(3) \ [1] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4.160(7) 4.067(8) 4.067(8) 4.161(7) 4.161(7) 3.908(13) 4.061(14) 4.068(8) 4.068(8) 4.068(8) 4.061(14) 4.268(15)	0.66380.1975-0.7214-10.4373-0.66380.19750.72146.46290.67990.2025-0.7047-9.9546-0.67990.20250.70476.35070.43070.0000-0.9025-18.5290-0.43070.00000.902518.52900.66380.1975-0.7214-3.57380.67990.2025-0.7047-2.92320.43070.0000-0.9025-18.5290-0.43070.0000-0.902518.52900.66380.1975-0.7214-3.57380.66380.1975-0.7214-3.57380.67990.2025-0.7047-2.9232	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
 Min or Max	3.908		0.00 21.29 41.69 -3.825 -3.825					

[7667] = 3/2-X,3/2-Y,2-Z [8464] = -1/2+X,3/2-Y,-1/2+Z [8565] = 1/2+X,3/2-Y,1/2+Z [3777] = 2-X,2-Y,2-Z

S14.4. Analysis of compound 7 [Cu(IDA)(H7deaA)(H2O)]·2H2O

Ring 3 is the five-membered ring in the purine moiety of H7deaA Ring 4 is the six-membered ring in the purine moiety of H7deaA

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.								
Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Transformed J-Plane P, Q, R, S	Alpha Beta Gamma	CgI_Perp CgJ_Perp	Slippage			
$\begin{array}{c} Cg(3) \ [1] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4.784(2) 3.495(2) 3.500(2) 3.397(2) 3.500(2) 3.398(2) 3.2589(18) 4.4579(19)	-0.94040.33690.04523.9609-0.94040.33690.0452-2.4288-0.93260.35810.04494.1024-0.93260.35810.0449-2.2342-0.94040.33690.04523.9609-0.94040.33690.0452-2.4288-0.93260.35810.04494.1024-0.93260.35810.04492.2342	$\begin{array}{ccccccc} 0 & 48.04 & 48.04 \\ 0 & 24.07 & 24.07 \\ 1.29(17) & 24.74 & 25.85 \\ 1.29(17) & 19.08 & 20.28 \\ 1.29(17) & 25.85 & 24.74 \\ 1.29(17) & 20.28 & 19.08 \\ 0 & 12.93 & 12.93 \\ 0 & 44.85 & 44.85 \end{array}$	-3.1985(14) -3.1984(14) 3.1912(14) 3.1914(14) -3.1499(14) -3.1790(13) 3.1868(14) 3.2107(13) -3.1790(13) -3.1497(14) 3.2107(13) 3.1869(14) -3.1763(13) -3.1763(13) 3.1603(13) 3.1603(13)	3.558 1.425) 0.729) 3.144			
Min or Max	3.259		0.00 12.93 48.04	-3.198 -3.198				

[2676] = 1-X,2-Y,1-Z [2776] = 2-X,2-Y,1-Z

S14.5. Analysis of compound **8** [Cu₂(MIDA)₂(μ_2 -N1-N3-H7deaA)(H₂O)₂]·5H₂O

Ring 7 is the five-membered ring in the purine moiety of H7deaA Ring 8 is the six-membered ring in the purine moiety of H7deaA

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.									
Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Transformed J-Plane P, Q, R, S	Alpha Beta	Gamma	Cgl_Perp	CgJ_Perp	Slippage		
$\begin{array}{c} Cg(7) \ [1] \ -> \ Cg(7) \ [2555.01] \\ Cg(7) \ [1] \ -> \ Cg(7) \ [2655.01] \\ Cg(7) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(7) \ [1] \ -> \ Cg(8) \ [2655.01] \\ Cg(8) \ [1] \ -> \ Cg(7) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(7) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [2555.01] \\ Cg(8) \ [1] \ -> \ Cg(8) \ [2555.01] \\ Cg(8) \ [25555.01] \\ Cg(8) \ [25555.01] \\ Cg(8) \ [25555.01] \\ Cg(8) \ [2$	3.938(3) 3.666(3) 3.640(3) 3.552(3) 3.640(3) 3.552(3) 4.465(3) 4.554(3)	-0.9815-0.00750.19141.6915-0.9815-0.00750.1914-5.1386-0.98140.00390.19181.6774-0.98140.00390.1918-5.1523-0.9815-0.00750.19141.6915-0.9815-0.00750.1914-5.1386-0.98140.00390.19181.6774-0.98140.00390.19185.1523	0 30. 0 19. 0.7(3) 21. 0.7(3) 14. 0.7(3) 21. 0.7(3) 21. 0.7(3) 13. 0 41. 0 40.	7730.779419.945321.941413.529421.535214.142941.292740.27	-3.383(2) 3.447(2) -3.376(2) 3.454(2) -3.386(2) 3.445(2) -3.355(2) 3.475(2)	-3.383(2) 3.447(2) -3.386(2) 3.445(2) -3.376(2) 3.454(2) -3.355(2) 3.475(2)	2.015 1.250 2.946 2.943		
 Min or	Max	3.552	0.0	0 13.52	41.29 -	3.386 -3.3	886		

[2555] = -X,-Y,-Z [2655] = 1-X,-Y,-Z
S14.6. Analysis of compound $9 [Cu(NBzIDA)(H7deaA)]_n$

Ring 5 is the six-membered ring of the benzyl-group of the chelating ligand NBzBIDA

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.									
Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Transformed J-Plane P, Q, R, S	Alpha Beta Gamma Cgl_Perp CgJ_Perp Slippage						
$\begin{array}{c} Cg(3) \ [1] \rightarrow Cg(4) \ [4555.01] \\ Cg(3) \ [1] \rightarrow Cg(5) \ [2746.01] \\ Cg(3) \ [1] \rightarrow Cg(5) \ [2747.01] \\ Cg(3) \ [1] \rightarrow Cg(5) \ [4554.01] \\ Cg(4) \ [1] \rightarrow Cg(3) \ [4554.01] \\ Cg(4) \ [1] \rightarrow Cg(4) \ [4555.01] \\ Cg(4) \ [1] \rightarrow Cg(4) \ [4555.01] \\ Cg(4) \ [1] \rightarrow Cg(5) \ [2746.01] \\ Cg(5) \ [1] \rightarrow Cg(5) \ [3667.01] \\ Cg(5) \ [1] \rightarrow Cg(5) \ [3767.01] \\ \hline \\ Cg(5) \ [1] \rightarrow Cg(5) \ [3767.01] \\ \hline \\ \hline \\ Min \ or \ Max \end{array}$	4.486(3) 5.528(3) 5.562(3) 5.563(3) 4.486(3) 4.677(2) 4.677(2) 5.976(3) 3.870(3) 5.316(3)	0.2495 -0.3045 0.9193 10.6094 -0.7787 0.4485 -0.4388 -9.2987 -0.7787 0.4485 -0.4388 -10.9439 0.7787 -0.4485 0.4388 6.0299 0.2386 -0.2987 0.9240 3.2216 0.2495 -0.3045 0.9193 3.2811 0.2495 -0.3045 0.9193 10.6094 -0.7787 0.4485 -0.4388 -9.2987 -0.7787 -0.4485 -0.4388 -8.2023 -0.7787 -0.4485 -0.4388 -15.0440	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
[4555] = X,1/2-Y,1/2+Z [2746] = 2-X,-1/2+Y,3/2-Z									

[2747] = 2-X,-1/2+Y,5/2-Z	[4554] = X,1/2-Y,-1/2+Z
[3667] = 1-X,1-Y,2-Z	[3767] = 2-X,1-Y,2-Z

Analysis of X-H., Cg(Pi-Ring) Interactions (H., Cg < 3.0 Ang Gamma < 30.0 Deg)									
=======================================	============	=======		========			==========		
XH(I) Res(I) Cg(J)	[ARU(J)]	HCg	Transformed J-Plane P, Q, R, S	H-Perp	Gamma	X-HCg	XCg	X-H,Pi	
C(24) = U(24A) [4] > Cr(5)	1 0767 041	2.00	0.7797 0.4495 0.4299 45.0440	0.77	22.00	4.4.4	2.044(E)	24	
C(31) -H(31A) [1] -> Cg(5)	[3/67.01]	3.00	-0.7787 -0.4485 -0.4388 -15.0440	2.11	22.80	144	3.844(5)	31	
Min or I	Max	3.000		2.76	5 22.80	144.00	3.844	31.00	

[3767] = 2-X,1-Y,2-Z

S15. FT-IR spectra

S15.1. FT-IR Spectra of [Cu(TEBIDA)(H7azain)(H₂O)]·3H₂O

S15.2. FT-IR Spectra of {[Cu(FBIDA)(H7azain)] \cdot H₂O}_n

S15.3. FT-IR Spectra of {[Cu(CBIDA)(H4abim)]·2H₂O}_n

S15.4. FT-IR Spectra of [Cu(H₂EDTA)(H4abim)]·0.5H₂O

S15.5. FT-IR Spectra of {[Cu₂(IDA)₂(μ_2 -N7,N9-H5abim)]·H₂O}_n

S15.6. FT-IR Spectra of [Cu₂(NBzIDA)₂(µ₂-N7,N9-H5abim)(H₂O)₂]·H₂O

S15.8. FT-IR Spectra of [Cu₂(MIDA)₂(µ₂-N1,N3-H7deaA)(H₂O)₂]·5H₂O

S15.9. FT-IR Spectra of [Cu(NBzIDA)(H7deaA)]_n

S15.10. FT-IR Spectra of [Cu(MEBIDA)(H7deaA)]_n

S16. Electronic spectra

S16.2. Electronic spectra of {[Cu(FBIDA)(H7azain)]·H₂O}_n

S16.3. Electronic spectra of {[Cu(CBIDA)(H4abim)]·2H₂O}_n

S16.4. Electronic spectra of [Cu(H₂EDTA)(H4abim)]·0.5H₂O

S16.5. Electronic spectra of {[Cu₂(IDA)₂(µ₂-N7,N9-H5abim)]·H₂O}_n

S16.6. Electronic spectra of [Cu₂(NBzIDA)₂(µ₂-N7,N9-H5abim)(H₂O) ₂]·H₂O

S16.7. Electronic spectra of [Cu(IDA)(H7deaA)(H2O)]·2H2O

S16.8. Electronic spectra of $[Cu_2(MIDA)_2(\mu_2-N1-N3-H7deaA)(H_2O)_2]\cdot 5H_2O$

S16.9. Electronic spectra of [Cu(NBzIDA)(H7deaA)]_n

S16.10. Electronic spectra of $[Cu(MEBIDA)(H7deaA)]_n$

S17. EPR spectra

X- and Q-band EPR measurements all the compounds were carried out on powdered samples at room temperature. In all cases, the spin Hamiltonian parameters were estimated by comparison of the experimental spectra with those obtained by a computer simulation program working at the second order of the perturbation theory. The obtained g-values are:

<u>X-band</u>

Muestra	Frec. (GHz)	g ₁	g ₂	g ₃	<g></g>
M1	9.4944	2.264	2.101	2.044	2.136
M2*	9.4910	2.131 (2.175)	2.131 (2.140)	2.131 (2.090)	2.131 (2.135)
M3	9.4936	2.240	2.077	2.066	2.128
M4	9.4942	2.312	2.094	2.050	2.152
M5	9.4950	2.236	2.096	2.065	2.132
M6	9.4937	2.244	2.083	2.055	2.127
M7	9.4936	2.273	2.061	2.061	2.132
M8	9.4932	2.242	2.090	2.062	2.131
M9**	9.4933	2.209	2.142	2.067	2.139
M10***	9.4947	2.217	2.102	2.072	2.130

* Broad signal. Anisotropic values are needed to fit the spectrum. However, the obtained values can not be defined as accurate.

** Similar to the previous case but with more reliable g values.

*** Mixthure of phases. The spectrum corresponds to the major phase but more contributions can be observed.

<u>Q-band</u>

Muestra	Frec. (GHz)	g ₁	g ₂	g ₃	<g></g>
M1	34.074	2.266	2.101	2.044	2.137
M2*	34.104	*	*	*	*
M3	34.101	2.246	2.077	2.065	2.129
M4	34.102	2.315	2.094	2.048	2.152
M5**	34.102	2.235/2.242	2.099/2.099	2.066/2.062	2.133/2.134
M6	34.074	2.249	2.088	2.057	2.131
M7	34.082	2.280	2.066	2.062	2.136
M8***	34.076	2.245	2.093	2.059	2.132
M9****	34.069	2.208	2.142	2.066	2.138
M10*****	34.069	****	****	****	****

This band is much more sensitive, fitting values are more reliable but, in constrast, impurities or preferential orientations can be also observed in the spectrum.

* Broad signal, bad resolution. A good fitting is not posible.

** Signal with two extra-peaks not observed in the X-band. The average g value is nearly the same as the X-band what could be attributted to modifications in part of the simple.

*** Signal with clear preferential orientations

**** Very broad signal. It can be fitted very good although the resulting g values are not that reliable.

***** At least two overlapping signals.

The X-band EPR spectra exhibit near axial symmetries for the *g* tensor but an appreciable extent of rhombicity can be detected operating at Q band. In all cases, the minor *g* value is higher than 2.04 as expected for mainly dx^2-y^2 ground states derived from square pyramidal or axially elongated octahedral geometries in Cu(II) ions. No "half-field" transitions or hyperfine lines could be observed in any case.

Experimental and Calculated X-band EPR spectra:

Compound (5)

Compound (6)

Compound (7) Compound (8) [Cu(IDA)(H7deaA)(H2O)]·2H2O [Cu₂(MIDA)₂(µ₂-N1,N3-H7deaA)(H₂O)₂]·5H₂O 0.4 0.4 Intensity / a.u. Intensity / a.u. 0 -0.4 -0.4 Exp. Exp -0.8 -0.8 alc Calc 2500 3000 3500 2500 3000 3500 H / Gauss H / Gauss

Compound (9)

Compound (10)

Experimental and Calculated Q-band EPR spectra:

Compound (4)

[Cu(H₂EDTA)(H4abim)]·0.5H₂O

Compound (5) $\{[Cu_2(IDA)_2(\mu_2-N7,N9-H5abim)]\cdot H_2O\}_n$

Compound (6) $[Cu_2(NBzIDA)_2(\mu_2-N7,N9-H5abim)(H_2O)_2]\cdot H_2O$

Compound (7) [Cu(IDA)(H7deaA)(H₂O)]·2H₂O

Compound (8) $[Cu_2(MIDA)_2(\mu_2-N1,N3-H7deaA)(H_2O)_2]\cdot 5H_2O$

Compound (9) [Cu(NBzIDA)(H7deaA)]_n

S18. Thermogravimetric analysis of compound $[Cu_2(MIDA)_2(\mu_2-N1-N3-$

H7deaA)(H₂O)₂]·5H₂O (8)

TG-study of compound $[Cu_2(MIDA)_2(\mu_2-N1-N3-H7deaA)(H_2O)_2]$ ·5H₂O with identification by FT-IR spectroscopy of the evolved gasses during pyrolisis.

Sample C-616: 5.562 mg. Air-dry flow: 100.0 mL/minute. Increasing rate of temperature: 10 °C/minute.

Note: the experimental weight loss after 450 °C is not considered within the experiment since does not correspond t the pyrolisis of the compound. Thus, small amounts of particles can be held within the CuO residue, what explains the presence of trace amounts of CO_2 in the FT-IR after minute 44 and the small error in the calculation of %CuO residue. The final drop of the TG curve at 870 °C is because part of the sample fell down from the thermo-balance at the end of the experiment due to mini-blast of the CuO residue because of such high temperatures.

a) The TG plot of compound **8** as a function of the time (bottom axis) and temperature (right axis). Weight sample in the left axis.

b) The TG-plot of compound 8 with weight loss as a function of the temperature (bottom axis)

c) The four sheets below show a time-spaced sequential series of twenty six FT-IR spectra, recorded at increasing times (minutes) which enable the identification of the evolved gasses. These pictures are followed by the Table-TG, where the results and interpretation are summarized. The spectra 1 to 6 correspond to the first step (water loss), whereas spectra 7 to 22 revealed gases evolved during the different pyrolitic steps that yield a residue of 2CuO. Spectra 23 to 26 are considered the tail of the experiment.

Sheet 1:

Sheet 2:

×

90	00 3500	3000	2500	2000	1500	1000	500	
00								
95	a subar frances				the first the first			
00	www.www.www.www.www.www.			وليعل وحد م	PROVING TANKS		Manual	him
90	inked exectsum at 30.620 min							
95	for the second				the fully			
00	and the state of t			hultun	ALLING MANY TIM		Munit	Linh
30	Linked spectrum at 29,600 min.							
95		TWIE	602	60	120	6447		
00	and all all a fully have a second	C		<	and the state of the second second	C	M	ANI
	Linked spectrum at 27,559 min.						PUL	aN
95	T.							
00	and My Maria		((matter and matter and ma	and the address of the second second			7.1
00	Linked spectrum at 26,538 min.							
90	V						Ť	
95 -	11/W	TMA	_	CO			4	
00	Linked spectrum at 25,517 min.	- for		~	مروالماليك والمواليت			mga
90	inked exects m at 25 517 mic							
95	W W			CO(t)				
00				N	and Michels aloude days and		1 1	mys
90	Linked spectrum at 24.497 min.							
95								
100	- and a second many				and a substances		M.	-the
00	Linked spectrum at 23,476 min.							

Sheet 3:

Sheet 4:

e) Sheet with FT-IR spectra from pure samples of the evolved gases, for identification purposes.

Step/ Residue	Temperatur e (°C)	Time (minutes)	No. of FT- IR	Weight Ioss	Weight loss	Gases or residue
		-	spectra	(exp.) %	(calc.) %	
1	40-210	3-20	6	12.419	12.317	4.3 H ₂ O, CO ₂ (t)
2	210-270	20-26	3	37.297	-	H ₂ O, CO ₂ , CO(t)
3	270-325	26-32	5	1.7982	-	H ₂ O, CO ₂ , CO, TMA, NH ₃ (t)
4	325-450	32-44	8	24.496	-	H ₂ O, CO ₂ , NH ₃ , N ₂ O, NO
Residue	~450	44	-	23.780	25.296	2CuO

f) Summary the TG-data and interpretation of results.

(t) = Trace amounts.

TMA = trimethylamine [N(CH₃)₃]. This gas is typically observed due to the pyrolysis of MIDA chelating ligand.