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(a) (b) 

Figure S1. UV-Vis absorption spectra variations of the ligand solutions (CL, start = 1.3×10
-5

 M) 

along the titration with acid (HCl 0.1 M) or base (KOH 0.1M) in the ranges of pH 0.98-2.36 (a) 

and 3.19-10.6 (b). In (a) the red arrow indicates the (small) increase of absorbance on going from 

pH 0.98 to 2.36. In (b) arrow 1 indicates an increase of absorbance (pH ~3-5) at 280 nm 

followed by nearly constant values corresponding to a large pH change and a sharp decrease 

(arrow 2) at pH > 9. Arrow 3 evidences the marked increase of absorbance at 304 nm at pH > 9 

corresponding to the decrease of absorbance at 280 nm. Data at 244, 280 and 304 nm are plotted 

in Figure 3. 

 

 

 

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013



 

 3 

0.0

0.1

0.2

0.3

0.4

0.5

230 280 330 380 430 480

Wavelength / nm

A
b

s
o

rb
a

n
c
e

1

2

3

 

Figure S2. UV-Vis absorption spectra variations of a solution of the ligand L in the presence of 

La
3+

, along the titration with base (pH = 3.07-10.6, CL = 1.3×10
-5

 M, CL/CLa3+ = 1.01). 
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Figure S3. Temperature dependence of the r1 (20 MHz) relaxivity of the complex Gd-

(NTP(PrHP)3)] at pH 7.1. 

 

Figure S4. pH dependence of the r1 (20 MHz) relaxivity of the complex Gd-(NTP(PrHP)3)] at 

37ºC. 
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Figure S5. Evolution of the relative water proton paramagnetic relaxation rate R1
p
 (t)/R1

p
(0) (20 

MHz, pH 7.1, 37 °C) versus time for 0.75 mM Gd-(NTP(PrHP)3), in 10 mM phosphate buffer 

solution, in the absence (empty circles) and in the presence (full circles) of an equimolar amount 

of Zn
2+

 ions. 
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Table S1. Stability constants for formation of Zn
2+

 - L complexes, ZnmHhLl (25 °C, I = 0.1 M 

KCl) 

log mhl log 151 log 141 log 131 log 121 log 111 log 302 

Zn
2+

-L 42.87±0.05 38.46±0.05 34.02±0.07 29.26±0.09 22.11±0.08 38.92±0.06 

 

Table S2. Initial volume and concentrations of the reagents in cell.  Titrant: KOH 51.71 mM for 

all titrations. Vf = V added final before precipitation occurred. 

Titration V, mL CL, mM CM, mM CH, mM Vf, mL 

H_1 85.0 0.2036 --- 7.112  

H_2 25.5 0.5851 --- 9.004  

H_3 4.924 2.098 --- 17.77  

      

La_1 25.50 0.398 0.375 8.538 3.92 

La_2 25.50 0.4069 0.1819 8.346 3.60 

La_3 4.092 1.090 0.3736 17.389 1.40 

      

Pr_1 25.50 0.3966 0.369 8.529 3.94 

Pr_2 25.5 0.3729 0.183 8.306 3.60 

Pr_3 4.890 1.072 0.334 17.793 1.40 

      

Gd_1 25.50 0.378 0.371 8.501 3.84 

Gd_2 25.50 0.3719 0.1863 8.3013 3.52 

Gd_3 4.894 1.078 0.331 17.950 1.42 

      

Er_1 25.50 0.3899 0.3702 8.376 3.80 

Er_2 25.50 0.2586 0.1857 7.627 3.40 

Er_3 4.925 1.087 0.3270 17.712 1.44 

      

Lu_1 25.50 0.3940 0.3769 8.477 3.84 

Lu_2 25.50 0.3950 0.182 8.394 3.56 

Lu_3 4.876 1.104 0.351 18.120 1.40 
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Equations used for the analysis of 
17

O NMR and NMRD data 

 
NMRD and 

17
O NMR data have been analysed within the framework of the Solomon-

Bloembergen-Morgan theory.  

 

 
17

O NMR spectroscopy 

 

From the measured 
17

O NMR relaxation rates and angular frequencies of the paramagnetic 

solutions, 1/T2 and , and of the acidified water reference, 1/T2A and , one can calculate the 

reduced relaxation rates and chemical shifts, 1/T2r and r, which may be written as in Equations 

(A1)-(A2), where, 1/T2m is the relaxation rate of the bound water and m is the chemical shift 

difference between bound and bulk water, m is the mean residence time or the inverse of the 

water exchange rate kex and Pm is the mole fraction of the bound water. 
1,2 
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Previous studies have shown that outer sphere contributions to the 
17

O relaxation rates are 

negligible. 
3 

 

In equation (A2) the chemical shift of the bound water molecule, m, depends on the hyperfine 

interaction between the Gd
3+

 electron spin and the 
17

O nucleus and is directly proportional to the 

scalar coupling constant, 


A
, as expressed in Equation (A3). 

4 

 



A

T

)B+S(Sμg
=Δω

B

BL
m

3k

1
 (A3) 

 

The isotopic Landé g factor is equal to 2.0 for the Gd
3+

, B represents the magnetic field, and kB is 

the Boltzmann constant. 

 

The outer-sphere contribution to the chemical shift is assumed to be linearly related to Δωm  by 

a constant Cos [Equation (A4)]. 
5 

 

 
Δωos= C osΔωm  (A4) 

 

In the transverse relaxation, the scalar contribution, 1/T2sc, is the most important [Equation (A9)]. 

1/s1 is the sum of the exchange rate constant and the electron spin relaxation rate.  
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The exchange rate is supposed to obey the Eyring equation. In equation (A7) S
‡ and H

‡
 are the 

entropy and enthalpy of activation for the water exchange process, and kex
298

 
 
is the exchange rate 

at 298.15 K. 
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NMRD 

The measured longitudinal proton relaxation rate, R1
obs

= 1/T1
obs

, is the sum of a paramagnetic 

and a diamagnetic contribution as expressed in Equation (A12), where r1 is the proton relaxivity: 

 

][+R=R+R=R +dpdobs 3

11111 Gdr  (A8) 

 

    The relaxivity can be divided into an inner and an outer sphere term as follows: 

 

1os1is1 r+r=r  (A9) 

 

The inner sphere term is given in Equation (A14), where q is the number of inner sphere water 

molecules. 
6 
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The longitudinal relaxation rate of inner sphere protons, 1/T1m
H
 is expressed by Equation (A11), 

where rGdH is the effective distance between the electron charge and the 
1
H nucleus, I is the 

proton resonance frequency and S is the Larmor frequency of the Gd
3+

 electron spin. 
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1 1 1 1

di m RH ieT  
                  for i= 1,2  (A12) 

 

where RH is the rotational correlation time of the Gd-Hwater vector. 
 

 

The rotational correlation time, RH is assumed to have simple exponential temperature 

dependence with an ER activation energy as given in equation (A13). 
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The outer-sphere contribution can be described by Equation (A14) where NA is the Avogadro 

constant, and Jos is its associated spectral density function as given by Equation (A15).
8,9 

 

  )T,(ω+)T,(ω+SS
Da

γγμπN
=r SI

ISA
2eos1eos

GdHGdH

2222

0
1os 7J3J1

4π405

32 








 (A14) 

 

 

1,2

19491

141

Re
2/3

GdHGdH

2/1

GdH

2/1

GdH

os

=j

T

τ
+iωω+

T

τ
+iωω+

T

τ
+iωω+

T

τ
+iωω+

=Tω,J

je

GdH

je

GdH

je

GdH

je

GdH

je















































































 

(A15) 

 

 

The longitudinal and transverse electronic relaxation rates, 1/T1e and 1/T2e are expressed by 

Equation (A16)-(A17), where v is the electronic correlation time for the modulation of the zero-

field-splitting interaction, Ev the corresponding activation energy and 
2
 is the mean square zero-

field-splitting energy. We assumed a simple exponential dependence of v versus 1/T as written in 

Equation (A18). 
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The diffusion coefficient for the diffusion of a water proton away from a Gd
III

 complex, DGdH, is 

assumed to obey an exponential law versus the inverse of the temperature, with an activation 

energy EDGdH, as given in Equation (A19). DGdH
298

 is the diffusion coefficient at 298.15K. 
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