Supplementary Information

New Tris-3,4-HOPO lanthanide complexes as potential imaging probes: complex stability and magnetic properties

Ana C. Mendonça,^a André F. Martins,^{b,c,d} Andrea Melchior,^e Sérgio M. Marques,^a Sílvia Chaves,^a Sandrine Villette,^d Stéphane Petoud,^d Pier Luigi Zanonato,^f Marilena Tolazzi,^{e.}Célia S. Bonnet,^d Éva Tóth,^d Plinio Di Bernardo,^f Carlos F.G.C. Geraldes^{b,c,g} and M. Amélia Santos^a

^aCentro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

^bDepartment of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal.

^cCenter of Neurosciences and Cell Biology, Largo Marquês de Pombal, University of Coimbra, Portugal

^{*d*} Coimbra Chemistry Center, Rua Larga, University of Coimbra, 3004-535 Coimbra, Portugal ^{*e*}Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France.

^fDipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy

^g Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy

(a) (b)

Figure S1. UV-Vis absorption spectra variations of the ligand solutions ($C_{L, \text{ start}} = 1.3 \times 10^{-5} \text{ M}$) along the titration with acid (HCl 0.1 M) or base (KOH 0.1M) in the ranges of pH 0.98-2.36 (a) and 3.19-10.6 (b). In (a) the red arrow indicates the (small) increase of absorbance on going from pH 0.98 to 2.36. In (b) arrow 1 indicates an increase of absorbance (pH ~3-5) at 280 nm followed by nearly constant values corresponding to a large pH change and a sharp decrease (arrow 2) at pH > 9. Arrow 3 evidences the marked increase of absorbance at 304 nm at pH > 9 corresponding to the decrease of absorbance at 280 nm. Data at 244, 280 and 304 nm are plotted in Figure 3.

Figure S2. UV-Vis absorption spectra variations of a solution of the ligand L in the presence of La³⁺, along the titration with base (pH = 3.07-10.6, $C_{\rm L} = 1.3 \times 10^{-5}$ M, $C_{\rm L}/C_{\rm La3+} = 1.01$).

Figure S3. Temperature dependence of the r_1 (20 MHz) relaxivity of the complex Gd-(NTP(PrHP)3)] at pH 7.1.

Figure S4. pH dependence of the r_1 (20 MHz) relaxivity of the complex Gd-(NTP(PrHP)3)] at 37°C.

Figure S5. Evolution of the relative water proton paramagnetic relaxation rate R_I^p (t)/ R_I^p (0) (20 MHz, pH 7.1, 37 °C) versus time for 0.75 mM Gd-(NTP(PrHP)₃), in 10 mM phosphate buffer solution, in the absence (empty circles) and in the presence (full circles) of an equimolar amount of Zn²⁺ ions.

Table S1. Stability constants for formation of Zn^{2+} - L complexes, $Zn_mH_hL_l$ (25 °C, I = 0.1 M KCl)

$\log \beta_{\rm mhl}$	$\log eta_{151}$	$\log eta_{141}$	$\log eta_{131}$	$\log eta_{121}$	$\log eta_{111}$	$\log eta_{302}$
Zn ²⁺ -L	42.87±0.05	38.46±0.05	34.02±0.07	29.26±0.09	22.11±0.08	38.92±0.06

Table S2. Initial volume and concentrations of the reagents in cell. Titrant: KOH 51.71 mM for all titrations. $V_f = V$ added final before precipitation occurred.

Titration	V, mL	$C_{\rm L}$, mM	$C_{\rm M}$, mM	$C_{\rm H}$, mM	V _f , mL
H_1	85.0	0.2036		7.112	
H_2	25.5	0.5851		9.004	
H_3	4.924	2.098		17.77	
La_1	25.50	0.398	0.375	8.538	3.92
La_2	25.50	0.4069	0.1819	8.346	3.60
La_3	4.092	1.090	0.3736	17.389	1.40
Pr_1	25.50	0.3966	0.369	8.529	3.94
Pr_2	25.5	0.3729	0.183	8.306	3.60
Pr_3	4.890	1.072	0.334	17.793	1.40
Gd_1	25.50	0.378	0.371	8.501	3.84
Gd_2	25.50	0.3719	0.1863	8.3013	3.52
Gd_3	4.894	1.078	0.331	17.950	1.42
Er_1	25.50	0.3899	0.3702	8.376	3.80
Er_2	25.50	0.2586	0.1857	7.627	3.40
Er_3	4.925	1.087	0.3270	17.712	1.44
Lu_1	25.50	0.3940	0.3769	8.477	3.84
Lu_2	25.50	0.3950	0.182	8.394	3.56
Lu_3	4.876	1.104	0.351	18.120	1.40

Equations used for the analysis of ¹⁷O NMR and NMRD data

NMRD and ¹⁷O NMR data have been analysed within the framework of the Solomon-Bloembergen-Morgan theory.

¹⁷O NMR spectroscopy

From the measured ¹⁷O NMR relaxation rates and angular frequencies of the paramagnetic solutions, $1/T_2$ and ω , and of the acidified water reference, $1/T_{2A}$ and ω_A , one can calculate the reduced relaxation rates and chemical shifts, $1/T_{2r}$ and $\Delta\omega_r$, which may be written as in Equations (A1)-(A2), where, $1/T_{2m}$ is the relaxation rate of the bound water and $\Delta\omega_m$ is the chemical shift difference between bound and bulk water, τ_m is the mean residence time or the inverse of the water exchange rate k_{ex} and P_m is the mole fraction of the bound water. ^{1,2}

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m^{-1}} + \Delta \omega_m^2}{(\tau_m^{-1} + T_{2m}^{-1})^2 + \Delta \omega_m^2} + \frac{1}{T_{2os}}$$
(A1)

$$\Delta \omega_r = \frac{1}{P_m} (\omega - \omega_A) = \frac{\Delta \omega_m}{(1 + \tau_m T_{2m}^{-1})^2 + \tau_m^2 \Delta \omega_m^2} + \Delta \omega_{os}$$
(A2)

Previous studies have shown that outer sphere contributions to the ¹⁷O relaxation rates are negligible.³

In equation (A2) the chemical shift of the bound water molecule, $\Delta \omega_m$, depends on the hyperfine interaction between the Gd³⁺ electron spin and the ¹⁷O nucleus and is directly proportional to the scalar coupling constant, $\frac{A}{\hbar}$, as expressed in Equation (A3). ⁴

$$\Delta\omega_m = \frac{g_L \mu_B S(S+1)B}{3k_B T} \frac{A}{\hbar}$$
(A3)

The isotopic Landé g factor is equal to 2.0 for the Gd^{3+} , B represents the magnetic field, and k_B is the Boltzmann constant.

The outer-sphere contribution to the chemical shift is assumed to be linearly related to $\Delta \omega_m$ by a constant C_{os} [Equation (A4)].⁵

$$\Delta\omega_{\rm os} = C_{\rm os} \Delta\omega_m \tag{A4}$$

In the transverse relaxation, the scalar contribution, $1/T_{2sc}$, is the most important [Equation (A9)]. $1/\tau_{s1}$ is the sum of the exchange rate constant and the electron spin relaxation rate.

$$\frac{1}{T_{2m}} = \frac{1}{T_{2sc}} = \frac{S(S+1)}{3} \left(\frac{A}{\hbar}\right)^2 \tau_{sl}$$
(A5)

$$\frac{1}{\tau_{\rm s1}} = \frac{1}{\tau_m} + \frac{1}{T_{\rm 1e}} \tag{A6}$$

The exchange rate is supposed to obey the Eyring equation. In equation (A7) ΔS^{\ddagger} and ΔH^{\ddagger} are the entropy and enthalpy of activation for the water exchange process, and k_{ex}^{298} is the exchange rate at 298.15 K.

$$\frac{1}{\tau_m} = k_{\rm ex} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{\rm ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
(A7)

NMRD

The measured longitudinal proton relaxation rate, $R_1^{obs} = 1/T_1^{obs}$, is the sum of a paramagnetic and a diamagnetic contribution as expressed in Equation (A12), where r_1 is the proton relaxivity:

$$R_1^{obs} = R_1^d + R_1^p = R_1^d + r_1 [\,\mathrm{Gd}^{3+}\,] \tag{A8}$$

The relaxivity can be divided into an inner and an outer sphere term as follows:

$$r_1 = r_{1is} + r_{1os} \tag{A9}$$

The inner sphere term is given in Equation (A14), where q is the number of inner sphere water molecules. ⁶

$$r_{\rm lis} = \frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{\rm lm}^{\,H} + \tau_m} \tag{A10}$$

The longitudinal relaxation rate of inner sphere protons, $1/T_{Im}^{H}$ is expressed by Equation (A11), where r_{GdH} is the effective distance between the electron charge and the ¹H nucleus, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the Gd³⁺ electron spin.

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{GdH}^{6}} S(S+1) \times \left[3J(\omega_{I};\tau_{dI}) + 7J(\omega_{S};\tau_{d2})\right]$$
(A11)

$$\frac{1}{4} \xrightarrow{1}_{i} \xrightarrow{$$

where τ_{RH} is the rotational correlation time of the Gd-H_{water} vector.

The rotational correlation time, τ_{RH} is assumed to have simple exponential temperature dependence with an E_R activation energy as given in equation (A13).

The outer-sphere contribution can be described by Equation (A14) where N_A is the Avogadro constant, and J_{os} is its associated spectral density function as given by Equation (A15).^{8,9}

$$r_{1os} = \frac{32N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_s^2 \gamma_l^2}{a_{GdH} D_{GdH}} S(S+1) [3J_{os}(\omega_I, T_{1e}) + 7J_{os}(\omega_S, T_{2e})]$$
(A14)
$$J_{os}(\omega, T_{je}) = \text{Re} \left[\frac{1 + 14 \left(i\omega \omega_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2}}{1 + \left(i\omega \omega_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2} + 49 \left(i\omega \omega_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right) + 19 \left(i\omega \omega_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{3/2}} \right]$$
(A15)
$$j = 1, 2$$

The longitudinal and transverse electronic relaxation rates, $1/T_{1e}$ and $1/T_{2e}$ are expressed by Equation (A16)-(A17), where τ_v is the electronic correlation time for the modulation of the zero-field-splitting interaction, E_v the corresponding activation energy and Δ^2 is the mean square zero-field-splitting energy. We assumed a simple exponential dependence of τ_v versus 1/T as written in Equation (A18).

$$\left(\frac{1}{T_{1e}}\right)^{\text{ZFS}} = \frac{1}{25} \Delta^2 \tau_v \left\{ 4S(S+1) - 3 \right\} \left(\frac{1}{1 + \omega_s^2 \tau_v^2} + \frac{4}{1 + 4\omega_s^2 \tau_v^2}\right)$$
(A16)
$$\left(\frac{1}{T_{2e}}\right)^{\text{ZFS}} = \Delta^2 \tau_v \left(\frac{5.26}{1 + 0.372\omega_s^2 \tau_v^2} + \frac{7.18}{1 + 1.24\omega_s \tau_v}\right)$$
(A17)

$$\tau_{\nu} = \tau_{\nu}^{298} \exp\left[\frac{E_{\nu}}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$
(A18)

The diffusion coefficient for the diffusion of a water proton away from a Gd^{III} complex, D_{GdH} , is assumed to obey an exponential law versus the inverse of the temperature, with an activation energy E_{DGdH} , as given in Equation (A19). D_{GdH}^{298} is the diffusion coefficient at 298.15K.

$$D_{\rm GdH} = D_{\rm GdH}^{298} \exp\left\{\frac{E_{\rm GdH}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
(A19)

References for Equations

- 1 T. J. Swift, R. E. Connick, J. Chem. Phys., 1962, 37, 307-320.
- 2 J. R. Zimmermann, W. E. Brittain, J. Phys. Chem., 1957, 61, 1328-1333.
- 3 K. Micskei, L. Helm, E. Brücher, A. E. Merbach, Inorg. Chem., 1993, 32, 3844-3850.
- 4 H. G. Brittain, J. F. Desreux, Inorg. Chem., 1984, 23, 4459-4466.
- 5 G. Gonzalez, H. D. Powell, V. Tissières, A. E. Merbach, J. Phys. Chem., 1994, 98, 53-59.
- 6 Z. Luz, S. Meiboom, J. Chem. Phys., 1964, 40, 2686-2692.
- 7 F. A. Dunand, A. Borel, A. E. Merbach, J. Am. Chem. Soc., 2002, 124, 710-716.
- 8 J. H. Freed, J. Chem. Phys., 1978, 68, 4034-4037.
- 9 S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn Reson. Spectrosc., 1991, 22, 487-567.