Supplementary Information

Na₂AgF₄: 1D antiferromagnet with unusually short Ag(II)…Ag(II) separation

Dominik Kurzydłowski^{1#}, Zoran Mazej² and Wojciech Grochala^{1,3#}

1.	Powder x-ray diffraction pattern of Na ₂ AgF ₄ 1
2.	Selected crystallographic data for Na ₂ AgF ₄ 1
3.	Comparison of the first coordination sphere of Na^+ and K^+ in Na_2AgF_4 and β -K ₂ AgF ₄ 2
4.	Comparison of experimental and theoretical geometry of Na_2AgF_4 and β -K ₂ AgF ₄ 2
5.	Spin-ordered states of Na ₂ AgF ₄ depicted in the 1x2x2 supercell
6.	Spin-ordered states of β -K ₂ AgF ₄ depicted in the 1x2x2 supercell
7.	Comparison of super-exchange paths in Na ₂ AgF ₄ at 0 GPa and 10 GPa as obtained from
DF	Γ+U calculations
8.	References

1. Powder x-ray diffraction pattern of Na₂AgF₄

The Rietveld fit in the Na₂CuF₄-type structure is depicted by a red line. Green lines depict the difference between the fit and experimental points.

2. Selected crystallographic data for Na₂AgF₄

	Na_2AgF_4				
	$P2_1/c$ (no. 14) Z = 2				
a, b, c (Å)	3.34160(5), 10.4012(1), 6.07607(9)				
β (°)	65.971(1)				
V (Å ³)	192.883(5)				
Ag (x,y,z)	2a (0, 0, 0)				
U ^{equiv} (Ag)	0.047				
Na (x,y,z)	4e (0.2487(8) 0.8472(2) 0.4672(5))				
U ^{iso} (Na)	0.0201(8)				
F1 (x,y,z)	$(0.4356(12)\ 0.4397(3)\ 0.7886(7))$				
$U^{iso}(F1)$	0.0465(14)				
F2 (x,y,z)	(0.0436(14) 0.1681(4) 0.8121(7))				
U ^{iso} (F2)	0.0512(14)				
GOF, R_p, R_{wp}	2.29, 3.18 %, 4.11 %				

3. Comparison of the first coordination sphere of $Na^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle +}$ in Na_2AgF_4 and $\beta\text{-}K_2AgF_4$

Blue/red/yellow/green balls depict Ag/F/Na/K atoms. Distances are given in Å.

4. Comparison of experimental and theoretical geometry of Na_2AgF_4 and β -K₂AgF₄.

	Na_2AgF_4			β-K ₂ AgF ₄		
	exp.#	DFT+U [#]	diff. (%)	exp.*	DFT+U [#]	diff. (%)
R _{Ag-F1}	2.081	2.118	1.8	2.103	2.140	1.8
R _{Ag···F1}	2.769	2.830	2.2	2.710	2.803	3.4
R _{Ag-F2}	2.061	2.115	2.6	2.059	2.119	2.9
r _{intra-chain}	3.342	3.406	1.9	3.717	3.815	2.6
r _{inter-chain}	5.617	5.695	1.4	7.290	7.404	1.5
	6.023	6.125	1.7	6.048	6.156	1.8
	6.076	6.194	1.9	6.386	6.506	1.9
	6.259	6.353	1.5	7.048	7.170	1.7
	7.464	7.608	1.9	7.150	7.313	2.3
	8.039	8.216	2.2	7.486	7.678	2.6

Distances are given in Å; * ref. [1]; [#] this work

5. Spin-ordered states of Na₂AgF₄ depicted in the 1x2x2 supercell

Red/green arrows depict up/down spin sites.

6. Spin-ordered states of β -K₂AgF₄ depicted in the 1x2x2 supercell

Red/green arrows depict up/down spin sites.

Pressure		0 GPa	10 GPa		
	Coupling	Ag(II)····Ag(II)	Coupling	Ag(II)···Ag(II)	
	constant	distance	constant	distance	
J_1	-0.31	3.406	-0.75	3.176 (-7 %)	
J_2	0.46	5.695	0.42	5.499 (-3 %)	
J_3	0.17	6.125	0.27	5.755 (-6 %)	
J_4	0.09	6.194	-0.31	5.805 (-6 %)	
J_5	0.23	6.353	0.40	6.036 (-5 %)	

7. Comparison of super-exchange paths in Na_2AgF_4 at 0 GPa and 10 GPa as obtained from DFT+U calculations

Values of coupling constants are given in meV, distances in Å.

8. References

[1] D. Kurzydłowski, M. Derzsi, A. Budzianowski, Z. Jagličić, W. Koźmiński, Z. Mazej, W. Grochala, , *Eur. J. Inorg. Chem.*, 2010, 2919.