Electronic Supporting Information

Decisive Interaction Which Determines Ferro/Antiferromagnetic coupling in {3d-4f} pair: A case study on dinuclear {V-Gd} complexes

Saurabh Kumar Singh and Gopalan Rajaraman*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. Fax:(+91)-22-2576-7152. E-mail:<u>raJaraman@chem.iitb.ac.in</u> We performed the DFT and CASSCF calculations on the complexes. The energies, spin densities and the J values are given in the table for the all the complexes 1, 2 and 3.

Table S1. DFT and CASSCF computed *J* values for parent complex 1, 2, 3 ad their model complexes.

Complex		J_{cal}		J_{exp}
		(cm^{-1})		(cm^{-1})
	level I	level II	CASSCF	
		DKH	f^7+d^1	
1	2.2	-1.1	1.08	1.5
2	-0.7	-6.27	0.63	-2.6
Exchange	J_{l}	J_2		
3	0.94	-0.01	-	0.46

Table S2: DFT computed energies for dinuclear complex 1 and 2 and their model complexes.

Complexes	Spin states	Energies	$J (\mathrm{cm}^{-1})$	Spin valu	ie <s**2></s**2>
-	-	-		HS	BS
Complex-1	HS	-3234.602642	2.01697	20.023	13.0229
-	BS	-3234.602605			
Complex-2	HS	-3390.6798	-0.707	20.0268	13.0268
-	BS	-3390.679812			
Model of Com	plex 1				
1A	HS	-3239.161573	2.36649	20.0228	13.0227
	BS	-3239.16153			
2A Model Cor	nplex of Comp	lex 2 with square	pyramida	l geometry	,
	HS	-3197.55213587	-0.062	20.0278	13.0278
	BS	-3197.55213699			

 Table S3. DFT computed energies for tetranuclear complex 3

Complex	Spin states	Energies		Spin value <s**2></s**2>
Complex-3			$J(\text{cm}^{-1})$	
	HS	-8320.05306815		72.0439
	BS1	-8320.05303417	0.94	44.0439
	BS2	-8320.05306866	-0.01	8.044

Figure S1. Pictorial representation of complex 1 and complex 2 with the labelling on all the atoms to follow table S4.

Table S4. DFT calculated spin densities on metals as well as their coordinating atoms of 1 and 2.

Complex 1

1	Gd	7.027100
2	V	1.150492
3	0	0.002295
4	0	-0.001012
5	0	-0.000772
6	0	-0.001356
7	Ν	-0.015197
8	Ν	-0.012296
51	Ν	0.002196
52	0	-0.005480
53	0	-0.004272
54	0	-0.000707
55	Ν	0.001507
56	0	-0.003771
57	0	-0.002555
58	0	-0.000226
59	Ν	0.000613
61	0	-0.000655
62	0	-0.000110
63	0	-0.000748
64	Η	-0.000054
65	Η	0.000046
66	0	-0.150471

Complex 2

1 Gd	7.029698
2 V	1.175478
3 O	-0.002576
4 O	-0.002617
5 O	-0.001076
6 O	-0.001066
7 N	-0.027028
8 N	-0.026958
54 O	-0.003412
55 O	-0.003541
56 O	-0.000272
57 N	0.001490
58 O	-0.004900
59 O	-0.004828
60 O	-0.000638
61 N	0.001718
62 O	-0.004225
63 O	-0.004035
64 O	-0.000394
65 N	0.002386
66 O	-0.002630
67 C	0.000705
68 C	-0.000141
72 C	-0.000239
76 O	-0.174317

Figure S2. The eigenvalues of the seven f- orbitals of complex **1** and **2** computed at CASSCF level of theory.

Table S5: Calculated overlap integrals for complex 1 and complex 2 Overlap integrals values are given for complex 1 and 2. The computed overlaps are given in the table as alpha for V(IV) and beta for Gd(III). The Gd-f orbital numbers given are the MO number generated from the DFT calculations

Complex 1	$J = 2.2 \text{ cm}^{-1}$	Complex	2 $J = -0.7 \text{ cm}^{-1}$
Gd-f orbital	V-orbital (176)	Gd-f orbi	tal V-orbital (192)
220	0.0084	241 f _x	_{yz} 0.0118
221	-0.0062	242	0.0082
222	-0.0005	243	0.0114
223 f _{xyz}	0.0105	246	-0.0020
224	0.0014	248	0.0091
225	0.0024	249	-0.0027
226	0.0007	245	-0.0014

Figure S3. square pyramidal model of complex 2

Complex 2A

Fitting

Bond Distance: Exponential function y=y0 + A*exp(R0*x) Where y0=-0.17158, A=56707.58781, R0=-4.62901

Out of plane shift: Exponential function y = A2 + (A1-A2)/(1 + exp((x-x0)/dx))where $A_1 = 2.83956$, $A_2 = 22.32277$, x0 = 2.33158, dx = 2.56009

Dihedral Angle: Exponential function y=y0 + A*exp(R0*x) Where y0=3.1014, A=-0.5907 R0=-0.05326

Bond Angle: Exponential function y=y0 + A*exp(R0*x)Where y0=9.22915, A = -3803.58059 R0 = -0.05869

Table S6. Calculated overlap integrals for different bond angles.

Bond-Angle-99	$J = -2.12 \text{ cm}^{-1}$	Bond-Angle-103	$J = -0.26 \text{ cm}^{-1}$	Bond-Angle-112	$J = 4.93 \text{ cm}^{-1}$
Gd-f orbital	V orbital (180)	Gd-f orbital	V-orbital (180)	Gd-f orbital	V-orbital (180)
228	-0.0050	228	-0.016	228	0.003
229	0.0064	229	-0.007	229	-0.003
230	-0.0038	230	-0.006	230	-0.006
232	0.0182	232	0.008	232	-0.002
234	0.0211	233	0.002	233	-0.002
235	-0.0087	234 f_{xyz}	-0.018	234 f _{xyz}	-0.018
236 f _{xyz}	-0.0216	236	-0.000	236	0.000

Bond-Angle-117	$J = 5.19 \text{ cm}^{-1}$	Bond-Angle-122	$J = 6.12 \text{ cm}^{-1}$
Gd-f orbital	V-orbital (181)	Gd-f orbital	V-orbital (181)
228	0.001	228	0.00219
229	0.012	229	-0.009
230	-0.001	230	-0.005
231	-0.001	232	0.005
232 f _{xyz}	0.005	233 f_{xyz}	-0.007
233	-0.002	234	0.006
235	-0.002	235	0.006

Figure S4. Thermal variation of χT for complex 3. Same as above but simulation upto 2K.

Figure S5. Spin density along with labels for the core structure of the tetrameric complex 3.

