# **Supporting Information**

# Heterometallic Appended {MMn<sup>III</sup><sub>4</sub>} Cubanes Encapsulated by

## Lacunary Polytungstate Ligands

Hai-Hong Wu, Shuang Yao, Zhi-Ming Zhang,\* Yang-Guang Li, You Song,\*

Zhu-Jun Liu, Xin-Bao Han and En-Bo Wang \*

## CONTENTS

| Section 1 | Experimental Section                     |
|-----------|------------------------------------------|
| Section 2 | Supplementary Structural Figures         |
| Section 3 | Magnetic properties                      |
| Section 4 | Supplementary Physical Characterizations |

#### Section 1 Experimental Section

**1. Materials and Methods**. All the reagents were commercially purchased and used without further purification. The  $K_8[\gamma-SiW_{10}O_{36}] \cdot 12H_2O$  precursor was synthesized according to the literature<sup>S1</sup> and characterized by IR spectrum. Elemental analyses (C and H) were performed on a PerkinElmer 2400 CHN element analyzer; Si, W, Mn, Dy, Sm, Er, K and Na were analyzed on a PLASMASPEC(I) ICP atomic emission spectrometer. IR spectra were recorded in the range 400-4000 cm<sup>-1</sup> on an Alpha Centaurt FTIR spectrophotometer using KBr pellets. TG analyses were performed on a Perkin–Elmer TGA7 instrument in flowing N<sub>2</sub> with a heating rate of 10 °C•min<sup>-1</sup>.

**2.** Synthesis of 1: 0.51 g Dy<sub>2</sub>O<sub>3</sub> was added in 10 mL distilled water, then 3.0 mL concentrated nitric acid was added in the mixture, which was refluxed for one hour resulting in solution A. 1.0 g  $K_{12}$ [ $\gamma$ -SiW<sub>10</sub>O<sub>38</sub>]·12H<sub>2</sub>O was dissolved in 30mL water, 1.0 g MnCl<sub>2</sub>·4H<sub>2</sub>O (5.05 mmol) and 5 mL solution A were added, followed by addition of 1 mL morpholine and 15 ml 2 M K<sub>2</sub>CO<sub>3</sub> aqueous solution. The resulting mixture with the pH value of 9.51 was further stirred at 60 °C for 4 h, Then 0.20 g NaCl was added into the resulting mixtures, which was further stirred for 10 min. Afterwards the solution was cooled down to ambient temperature and a brown residue was filtered off. After three days, brown tubular crystals suitable for X-ray diffraction were obtained (Yields: 27 % based on W). Anal. Found (%): C, 0.18; H, 0.93; Dy, 2.89; K, 4.99; Mn, 4.21; Na, 2.78, Si, 0.95; W, 55.61; Calcd: C, 0.23; H, 0.87; Dy, 3.06; K, 5.16; Mn, 4.14; Na, 2.60, Si, 1.06; W, 55.44. IR (KBr pellet): vmax/cm<sup>-1</sup>

3433 (s), 1631 (s), 1461 (w), 1365 (w), 989 (w), 940 (w), 864 (m), 781 (m), 707 (m) and 507 (w).

Synthesis of 2. 1.0 g  $K_{12}$ [ $\gamma$ -Si $W_{10}O_{38}$ ]·12H<sub>2</sub>O was dissolved in 30mL water, 1.0 g MnCl<sub>2</sub>·4H<sub>2</sub>O (5.05mmol) was added, followed by addition of 1 mL morpholine and 6 mL 2 M K<sub>2</sub>CO<sub>3</sub> aqueous solution, the resulting mixture with the pH value of 9.99 was further stirred at 50 °C for 4 h. Then 0.20 g NaCl was added into the resulting mixtures, which was further stirred for 10 min. Afterwards the solution was cooled down to ambient temperature and a brown residue was filtered off. After two days, brown block crystals suitable for X-ray diffraction were obtained (Yield: 33 % based on W). Anal. Found (%): C, 0.17; H, 0.96; K, 7.27; Mn, 4.01; Na, 2.79, Si, 1.18; W, 55.67; Calcd: C, 0.23; H, 0.88; K, 7.43; Mn, 4.18; Na, 2.62, Si, 1.07; W, 55.91. IR (KBr pellet): vmax/cm<sup>-1</sup> 3430 (s), 1627 (s), 1459 (w), 1378 (w), 986 (w), 939 (m), 860 (s), 787 (m), 700 (s) and 503 (s).

3. X-ray Crystallography. The crystallographic data were performed on an Oxford Diffraction Gemini R CCD for 1, and a Rigaku R-AXIS RAPID IP diffractometer for 2. The data were collected at 293 K, and graphite-monochromated Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å). The structures were solved by the direct method and refined by the Full-matrix least squares on  $F^2$  using the SHELXL-97 software.<sup>S2</sup> During the refinement of compounds 1 and 2, all hydrogen atoms on water molecules and protonation were directly included in the molecular formula. The restraint command 'isor' was employed to restrain the oxygen atoms so as to avoid the ADP and NPD problems on them. This command leds to the restraint numbers 60 and 228 for the two

compounds, respectively. The crystal data and structure refinements of **1** and **2** are summarized in Table S1. CSD reference numbers, 424616 for **1** and 424618 for **2**, contain the supplementary crystallographic data for this paper. This data may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de).

S1 (a) A.Tézé and G. Hervé, *Inorg. Synth.*, 1990, 27, 85; (b) J. Canny, A. Tézé and R.
 Thouvenot, G. Hervé, *Inorg. Chem.*, 1986, 25, 2114.

S2 G. M. Sheldrick, *SHELXL97, Program for Crystal Structure Refinement*, University of Göttingen: Göttingen, Germany, 1997; G. M. Sheldrick, *SHELXS97, Program for Crystal Structure Solution*, University of Göttingen: Göttingen, Germany, 1997.

|                                                                                                                                      | 1                                                                              | 2                                                                             |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Empirical formula                                                                                                                    | $\begin{array}{c} CH_{46}DyK_{7}Mn_{4}Na_{6}\\ O_{91}Si_{2}W_{16} \end{array}$ | $\begin{array}{c} CH_{46}K_{10}Mn_{4}Na_{6}O_{91}Si_{2}\\ W_{16} \end{array}$ |  |  |  |  |
| М                                                                                                                                    | 5306.06                                                                        | 5260.86                                                                       |  |  |  |  |
| λ/Å                                                                                                                                  | 0.71073                                                                        | 0.71073                                                                       |  |  |  |  |
| T/K                                                                                                                                  | 293(2)                                                                         | 293(2)                                                                        |  |  |  |  |
| Crystal<br>dimensions/mm                                                                                                             | $0.43 \times 0.12 \times 0.10$                                                 | $0.28\times\!\!0.20\times0.07$                                                |  |  |  |  |
| Crystal system                                                                                                                       | Monoclinic                                                                     | Triclinic                                                                     |  |  |  |  |
| Space group                                                                                                                          | <i>P</i> 2(1)/c                                                                | <i>P</i> -1                                                                   |  |  |  |  |
| a/Å                                                                                                                                  | 17.3957(15)                                                                    | 15.649(3)                                                                     |  |  |  |  |
| <i>b</i> /Å                                                                                                                          | 42.861(4)                                                                      | 19.135(4)                                                                     |  |  |  |  |
| c/Å                                                                                                                                  | 12.8507(11)                                                                    | 19.233(4)                                                                     |  |  |  |  |
| $\alpha/^{\circ}$                                                                                                                    | 90                                                                             | 62.37(3)                                                                      |  |  |  |  |
| $eta/^{\circ}$                                                                                                                       | 108.4000(10)                                                                   | 88.04(3)                                                                      |  |  |  |  |
| γ/°                                                                                                                                  | 90                                                                             | 73.62(3)                                                                      |  |  |  |  |
| $V/\text{\AA}^3$                                                                                                                     | 9091.6(14)                                                                     | 4863.7(17)                                                                    |  |  |  |  |
| Ζ                                                                                                                                    | 4                                                                              | 2                                                                             |  |  |  |  |
| $D_c/\mathrm{Mg~m}^{-3}$                                                                                                             | 3.876                                                                          | 3.592                                                                         |  |  |  |  |
| $\mu/\mathrm{mm}^{-1}$                                                                                                               | 21.987                                                                         | 19.923                                                                        |  |  |  |  |
| <i>F</i> (000)                                                                                                                       | 9428                                                                           | 4696                                                                          |  |  |  |  |
| $\theta$ Range/°                                                                                                                     | 2.51-28.39                                                                     | 3.00-25.00                                                                    |  |  |  |  |
| Data/restraints/param eters                                                                                                          | 21917 / 60 / 1169                                                              | 16508/228/1191                                                                |  |  |  |  |
| $R_1(I > 2\sigma(I))^a$                                                                                                              | 0.0387                                                                         | 0.0554                                                                        |  |  |  |  |
| $wR_2$ (all data) <sup><i>a</i></sup>                                                                                                | 0.0876                                                                         | 0.1479                                                                        |  |  |  |  |
| Goodness-of-fit on $F^2$                                                                                                             | 0.978                                                                          | 1.055                                                                         |  |  |  |  |
| ${}^{a}R1 = \sum   F_{0}  -  F_{C}   / \sum  F_{0} ; \ wR_{2} = \sum [w(F_{0}^{2} - F_{C}^{2})^{2}] / \sum [w(F_{0}^{2})^{2}]^{1/2}$ |                                                                                |                                                                               |  |  |  |  |

 Table S1 Crystal Data and Structure Refinement for 1 and 2.

| Bonds                  | Bond length (Å) | BVS      | Bonds                  | Bond length (Å) | BVS      |
|------------------------|-----------------|----------|------------------------|-----------------|----------|
|                        | Compound 1      |          |                        | Compound 2      |          |
| Mn(1)-O(25)            | 1.918(7)        | 0.651213 | Mn(1)-O(57)            | 1.929(13)       | 0.633112 |
| Mn(1)-O(40)            | 1.924(8)        | 0.640565 | Mn(1)-O(37)            | 1.973(13)       | 0.562127 |
| Mn(1)-O(21)            | 1.928(7)        | 0.633848 | Mn(1)-O(26)            | 1.974(14)       | 0.560595 |
| Mn(1)-O(15)            | 1.954(7)        | 0.590836 | Mn(1)-O(42)            | 2.149(16)       | 0.349314 |
| Mn(1)-O(14)            | 2.127(8)        | 0.370073 | Mn(1)-O(11)            | 2.266(12)       | 0.254643 |
| Mn(1)-O(32)            | 2.271(7)        | 0.250832 | Mn(1)-O(43)            | 1.929(13)       | 0.633112 |
| $V_{\rm Mn(1)} = 3.14$ |                 |          | $V_{\rm Mn(1)} = 2.99$ |                 |          |
| Mn(2)-O(57)            | Mn(2)-O(57)     | 0.702406 | Mn(2)-O(55)            | 1.914(13)       | 0.659306 |
| Mn(2)-O(25)            | Mn(2)-O(25)     | 0.645954 | Mn(2)-O(57)            | 1.927(11)       | 0.636578 |
| Mn(2)-O(20)            | Mn(2)-O(20)     | 0.534466 | Mn(2)-O(56)            | 1.970(14)       | 0.566688 |
| Mn(2)-O(60)            | Mn(2)-O(60)     | 0.461888 | Mn(2)-O(43)            | 2.011(13)       | 0.507261 |
| Mn(2)-O(32)            | Mn(2)-O(32)     | 0.396049 | Mn(2)-O(25)            | 2.118(14)       | 0.379862 |
| Mn(2)-O(37)            | Mn(2)-O(37)     | 0.327782 | Mn(2)-O(63)            | 2.285(13)       | 0.24189  |
| $V_{\rm Mn(2)} = 3.07$ |                 |          | $V_{\rm Mn(2)} = 2.99$ |                 |          |
| Mn(3)-O(54)            | 1.907(7)        | 0.670864 | Mn(3)-O(42)            | 1.873(15)       | 0.736526 |
| Mn(3)-O(35)            | 1.923(8)        | 0.642298 | Mn(3)-O(34)            | 1.899(15)       | 0.686547 |
| Mn(3)-O(15)            | 1.922(7)        | 0.644211 | Mn(3)-O(30)            | 1.947(14)       | 0.603033 |
| Mn(3)-O(25)            | 1.940(7)        | 0.613621 | Mn(3)-O(57)            | 1.973(13)       | 0.562127 |
| Mn(3)-O(12)            | 2.137(8)        | 0.360205 | Mn(3)-O(6)             | 2.098(13)       | 0.400972 |
| Mn(3)-O(37)            | 2.277(7)        | 0.246797 | Mn(3)-O(63)            | 2.270(11)       | 0.251912 |
| $V_{\rm Mn(3)} = 3.18$ |                 |          | $V_{\rm Mn(3)} = 3.24$ |                 |          |
| Mn(4)-O(47)            | 1.910(7)        | 0.665446 | Mn(4)-O(22)            | 1.861(13)       | 0.760846 |
| Mn(4)-O(15)            | 1.918(7)        | 0.651213 | Mn(4)-O(51)            | 1.949(14)       | 0.599782 |
| Mn(4)-O(53)            | 1.994(8)        | 0.53015  | Mn(4)-O(42)            | 1.966(13)       | 0.572863 |
| Mn(4)-O(1)             | 2.055(8)        | 0.449572 | Mn(4)-O(63)            | 2.015(14)       | 0.501793 |
| Mn(4)-O(37)            | 2.076(7)        | 0.424881 | Mn(4)-O(53)            | 2.142(14)       | 0.356005 |
| Mn(4)-O(32)            | 2.168(7)        | 0.331345 | Mn(4)-O(43)            | 2.286(12)       | 0.241244 |
| $V_{\rm Mn(4)} = 3.05$ |                 |          | $V_{\rm Mn(4)} = 3.03$ |                 |          |

| <b>Table S2.</b> Bond valence sum calculations of compounds 1 and 2. <sup>[S3,S4]</sup> |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

[S3] The valence sum calculations are performed on a program of bond valence calculator, version 2.00 February **1993**, written by C. Hormillosa, with assistance from Healy, S. distributed by I. D. Brown.

[S4] I. D.Brown, Altermatt, D. Acta Crystallogr., 1985, B41, 244.

### Section 2 Supplementary Structural Figures



Fig. S1. (a) Ball-and-stick representation of the {DyMn<sub>4</sub>} cluster in 1; (b) ball-and-stick representation of the {KMn<sub>4</sub>} cluster in 2.



Fig. S2. (a) Appended {LnMn<sub>4</sub>} cubane core of 1 and (b) appended {KMn<sub>4</sub>} cubane core of 2.



Fig. S3. The 3D packing agreement of 1 along *b*-axis. The  $K^+$ , Na<sup>+</sup> and water molecules are omitted for clearity.



**Fig. S4.** The 3D packing agreement of **1** along *c*-axis. The K<sup>+</sup>, Na<sup>+</sup> and water molecules are omitted for clearity.



**Fig. S5.** The 3D packing agreement of **2** along *a*-axis. The K<sup>+</sup>, Na<sup>+</sup> and water molecules are omitted for clearity.



**Fig. S6.** The 3D packing agreement of **2**. The K<sup>+</sup>, Na<sup>+</sup> and water molecules are omitted for clearity.

Section 3 Magnetic properties



Fig. S7. Temperature dependence of magnetic susceptibilitites in the form of  $\chi_M$  for 2.



Fig. S8. Field dependence of magnetization for 2.



Fig. S9. The energy diagram for 2. The energy was calculated by the fitting results J,  $J_1$  and  $J_2$  as described in main text.



**Fig. S10.** Plot of reduced magnetization measurement of randomly oriented powder sample of **2** and the fit curve by ANISOFIT.



Fig. S11. Temperature dependence of the AC magnetic susceptibilities of 2.



Fig. S12. Temperature dependence of magnetic susceptibilitites in the form of  $\chi_M$  for



**Fig. S13.** Low-temperature products of  $\chi_M T(1) - \chi_M T(2)$ .



Fig. S14. Field dependence of magnetization for 1.



Fig. S15. Plot of reduced magnetization measurement of randomly oriented powder sample of 1.



Fig. S16. Temperature dependence of the in-phase AC magnetic susceptibilities of 1 in a zero applied static field and with a 5 Oe oscillating field.



Fig. S17. Temperature dependence of the AC magnetic susceptibilities of 1 in 2 kOe applied static field and with a 5 Oe oscillating field.

Appendix: The model for fitting the magnetic properties of complex 2 by Kambe method.



Ĥ

$$= -2J\hat{S}_{1}\hat{S}_{3} - 2J_{1}\hat{S}_{2}\hat{S}_{4} - 2J_{2}(\hat{S}_{1}\hat{S}_{2} + \hat{S}_{2}\hat{S}_{3} + \hat{S}_{3}\hat{S}_{4} + \hat{S}_{4}\hat{S}_{1})$$

$$= -2J_{2}[(\hat{S}_{1}\hat{S}_{2} + \hat{S}_{1}\hat{S}_{3} + \hat{S}_{1}\hat{S}_{4} + \hat{S}_{2}\hat{S}_{3} + \hat{S}_{2}\hat{S}_{4} + \hat{S}_{3}\hat{S}_{4}) - (\hat{S}_{1}\hat{S}_{3} + \hat{S}_{2}\hat{S}_{4})] - 2J\hat{S}_{1}\hat{S}_{3} - 2J_{1}\hat{S}_{2}\hat{S}_{4}$$

$$= -J_{2}[(\hat{S}_{1} + \hat{S}_{2} + \hat{S}_{3} + \hat{S}_{4})^{2} - \hat{S}_{1}^{2} - \hat{S}_{2}^{2} - \hat{S}_{3}^{2} - \hat{S}_{4}^{2}] + 2J_{2}(\hat{S}_{1}\hat{S}_{3} + \hat{S}_{2}\hat{S}_{4}) - 2J\hat{S}_{1}\hat{S}_{3} - 2J_{1}\hat{S}_{2}\hat{S}_{4}$$

$$= -J_{2}(\hat{S}_{T}^{2} - \sum_{i=1}^{4}\hat{S}^{2}) - 2(J - J_{2})\hat{S}_{1}\hat{S}_{3} - 2(J_{1} - J_{2})\hat{S}_{2}\hat{S}_{4}$$

$$= -J_{2}(\hat{S}_{T}^{2} - \sum_{i=1}^{4}\hat{S}^{2}) - (J - J_{2})[(\hat{S}_{1} + \hat{S}_{3})^{2} - \hat{S}_{1}^{2} - \hat{S}_{3}^{2}] - (J_{1} - J_{2})[(\hat{S}_{2} + \hat{S}_{4})^{2} - \hat{S}_{2}^{2} - \hat{S}_{4}^{2}]$$

$$= -J_{2}\hat{S}_{T}^{2} + (J_{2} - J)\hat{S}_{A}^{2} + J(\hat{S}_{1}^{2} + \hat{S}_{3}^{2}) + (J_{2} - J_{1})\hat{S}_{B}^{2} + J_{1}(\hat{S}_{2}^{2} + \hat{S}_{4}^{2})$$

$$= -J_{2}\hat{S}_{T}^{2} + (J_{2} - J)\hat{S}_{A}^{2} + (J_{2} - J_{1})\hat{S}_{B}^{2} + J(\hat{S}_{1}^{2} + \hat{S}_{3}^{2}) + J_{1}(\hat{S}_{2}^{2} + \hat{S}_{4}^{2})$$

where

$$\hat{S}_{A} = \hat{S}_{1} + \hat{S}_{3}, \qquad \hat{S}_{B} = \hat{S}_{2} + \hat{S}_{4} \qquad \hat{S}_{T} = \hat{S}_{A} + \hat{S}_{B}$$
$$E(S_{T}, S_{A}, S_{B}) = -J_{2}S_{T}(S_{T}+1) + (J_{2}-J)S_{A}(S_{A}+1) + (J_{2}-J_{1})S_{B}(S_{B}+1)$$

| S                      | 2 2       | 22        |
|------------------------|-----------|-----------|
|                        | Ļ         | Ļ         |
| $S_{\rm A}, S_{\rm B}$ | 0 1 2 3 4 | 0 1 2 3 4 |

 $S_{\rm A}, S_{\rm B} \rightarrow S_{\rm T}$ 

| ≈A, ≈B = ∞                 | 1                              |                                    |                                            |                                                  |
|----------------------------|--------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------------|
| $S_{\rm A} = 0$            | $S_{\rm A} = 1$                | $S_{\rm A} = 2$                    | $S_{\rm A} = 3$                            | $S_{\rm A} = 4$                                  |
| $S_{\rm B}=0, S_{\rm T}$   | $S_{\rm B} = 0, S_{\rm T} = 1$ | $S_{\rm B} = 0, S_{\rm T} = 2$     | $S_{\rm B} = 0, S_{\rm T} = 3$             | $S_{\rm B} = 0, S_{\rm T} = 4$                   |
| = 0                        | $S_{\rm B}$ = 1, $S_{\rm T}$ = | $S_{\rm B} = 1, S_{\rm T} = 1,2,3$ | $S_{\rm B} = 1, S_{\rm T} = 2,3,4$         | $S_{\rm B} = 1, S_{\rm T} = 3, 4, 5$             |
| $S_{\rm B} = 1, S_{\rm T}$ | 0,1,2                          | $S_{\rm B}$ = 2, $S_{\rm T}$ =     | $S_{\rm B} = 2, S_{\rm T} = 1, 2, 3, 4, 5$ | $S_{\rm B} = 2, S_{\rm T} = 2,3,4,5,6$           |
| = 1                        | $S_{\rm B}$ = 2, $S_{\rm T}$ = | 0,1,2,3,4                          | $S_{\rm B}$ = 3, $S_{\rm T}$ =             | $S_{\rm B} = 3, S_{\rm T} = 1, 2, 3, 4, 5, 6, 7$ |

| $S_{\rm B} = 2, S_{\rm T}$ | 1,2,3                          | $S_{\rm B}$ = 3, $S_{\rm T}$ = | 0,1,2,3,4,5,6                  | $S_{\rm B}$ = 4, $S_{\rm T}$ = |
|----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| = 2                        | $S_{\rm B}$ = 3, $S_{\rm T}$ = | 1,2,3,4,5                      | $S_{\rm B}$ = 4, $S_{\rm T}$ = | 0,1,2,3,4,5,6,7,8              |
| $S_{\rm B} = 3, S_{\rm T}$ | 2,3,4                          | $S_{\rm B}$ = 4, $S_{\rm T}$ = | 1,2,3,4,5,6,7                  |                                |
| = 3                        | $S_{\rm B}$ = 4, $S_{\rm T}$ = | 2,3,4,5,6                      |                                |                                |
| $S_{\rm B} = 4, S_{\rm T}$ | 3,4,5                          |                                |                                |                                |
| = 4                        |                                |                                |                                |                                |

| $(S_{\mathrm{T}}, S_{\mathrm{A}}, S_{\mathrm{B}})$ | $S_{\mathrm{T}}(S_{\mathrm{T}}+1)$ | $S_A(S_A+1)$ | $S_{\rm B}(S_{\rm B}+1)$ | $E(S_{\mathrm{T}},S_{\mathrm{A}},S_{\mathrm{B}})$ | $E_{\text{cale}} (\text{cm}^{-1})$ |
|----------------------------------------------------|------------------------------------|--------------|--------------------------|---------------------------------------------------|------------------------------------|
| (0, 0, 0)                                          | 0                                  | 0            | 0                        | 0                                                 | 0                                  |
| (1, 0, 1)                                          | 2                                  | 0            | 2                        | $-2J_1$                                           | -7.84944                           |
| (2, 0, 2)                                          | 6                                  | 0            | 6                        | $-6J_1$                                           | -23.5483                           |
| (3, 0, 3)                                          | 12                                 | 0            | 12                       | $-12J_1$                                          | -47.0966                           |
| (4, 0, 4)                                          | 20                                 | 0            | 20                       | $-20J_1$                                          | -78.4944                           |
| (1, 1, 0)                                          | 2                                  | 2            | 0                        | -2J                                               | 8.887                              |
| (0, 1, 1)                                          | 0                                  | 2            | 2                        | $-2J-2J_1+4J_2$                                   | -1.7342                            |
| (1, 1, 1)                                          | 2                                  | 2            | 2                        | $-2J-2J_1+2J_2$                                   | -0.34832                           |
| (2, 1, 1)                                          | 6                                  | 2            | 2                        | $-2J-2J_1-2J_2$                                   | 2.42344                            |
| (1, 1, 2)                                          | 2                                  | 2            | 6                        | $-2J-6J_1+6J_2$                                   | -18.819                            |
| (2, 1, 2)                                          | 6                                  | 2            | 6                        | $-2J-6J_1+2J_2$                                   | -16.0472                           |
| (3, 1, 2)                                          | 12                                 | 2            | 6                        | $-2J-6J_1-4J_2$                                   | -11.8896                           |
| (2, 1, 3)                                          | 6                                  | 2            | 12                       | $-2J-12J_1+8J_2$                                  | -43.7532                           |
| (3, 1, 3)                                          | 12                                 | 2            | 12                       | $-2J-12J_1+2J_2$                                  | -39.5955                           |
| (4, 1, 3)                                          | 20                                 | 2            | 12                       | $-2J-12J_1-6J_2$                                  | -34.052                            |
| (3, 1, 4)                                          | 12                                 | 2            | 20                       | $-2J-20J_1+10J_2$                                 | -76.5368                           |
| (4, 1, 4)                                          | 20                                 | 2            | 20                       | $-2J-20J_1+2J_2$                                  | -70.9933                           |
| (5, 1, 4)                                          | 30                                 | 2            | 20                       | $-2J-20J_1-8J_2$                                  | -64.0639                           |
| (2, 2, 0)                                          | 6                                  | 6            | 0                        | -6J                                               | 26.661                             |
| (1, 2, 1)                                          | 2                                  | 6            | 2                        | $-6J-2J_1+6J_2$                                   | 14.65392                           |
| (2, 2, 1)                                          | 6                                  | 6            | 2                        | $-6J-2J_1+2J_2$                                   | 17.42568                           |
| (3, 2, 1)                                          | 12                                 | 6            | 2                        | $-6J-2J_1-4J_2$                                   | 21.58332                           |
| (0, 2, 2)                                          | 0                                  | 6            | 6                        | $-6J-6J_1+12J_2$                                  | -5.2026                            |
| (1, 2, 2)                                          | 2                                  | 6            | 6                        | $-6J-6J_1+10J_2$                                  | -3.81672                           |
| (2, 2, 2)                                          | 6                                  | 6            | 6                        | $-6J-6J_1+6J_2$                                   | -1.04496                           |
| (3, 2, 2)                                          | 12                                 | 6            | 6                        | $-6J-6J_1$                                        | 3.11268                            |
| (4, 2, 2)                                          | 20                                 | 6            | 6                        | $-6J-6J_1-8J_2$                                   | 8.6562                             |
| (1, 2, 3)                                          | 2                                  | 6            | 12                       | $-6J-12J_1+16J_2$                                 | -31.5227                           |
| (2, 2, 3)                                          | 6                                  | 6            | 12                       | $-6J-12J_1+12J_2$                                 | -28.7509                           |
| (3, 2, 3)                                          | 12                                 | 6            | 12                       | $-6J-12J_1+6J_2$                                  | -24.5933                           |
| (4, 2, 3)                                          | 20                                 | 6            | 12                       | $-6J-12J_1-2J_2$                                  | -19.0498                           |
| (5, 2, 3)                                          | 30                                 | 6            | 12                       | $-6J-12J_1-12J_2$                                 | -12.1204                           |
| (2, 2, 4)                                          | 6                                  | 6            | 20                       | $-6J-20J_1+20J_2$                                 | -65.6922                           |
| (3, 2, 4)                                          | 12                                 | 6            | 20                       | $-6J-20J_1+14J_2$                                 | -61.5346                           |

| (4, 2, 4) | 20 | 6  | 20 | $-6J-20J_1+6J_2$   | -55.991  |
|-----------|----|----|----|--------------------|----------|
| (5, 2, 4) | 30 | 6  | 20 | $-6J-20J_1-4J_2$   | -49.0616 |
| (6, 2, 4) | 42 | 6  | 20 | $-6J-20J_1-16J_2$  | -40.7464 |
| (3, 3, 0) | 12 | 12 | 0  | -12J               | 53.322   |
| (2, 3, 1) | 6  | 12 | 2  | $-12J-2J_1+8J_2$   | 39.92904 |
| (3, 3, 1) | 12 | 12 | 2  | $-12J-2J_1+2J_2$   | 44.08668 |
| (4, 3, 1) | 20 | 12 | 2  | $-12J-2J_1-6J_2$   | 49.6302  |
| (1, 3, 2) | 2  | 12 | 6  | $-12J-6J_1+16J_2$  | 18.68664 |
| (2, 3, 2) | 6  | 12 | 6  | $-12J-6J_1+12J_2$  | 21.4584  |
| (3, 3, 2) | 12 | 12 | 6  | $-12J-6J_1+6J_2$   | 25.61604 |
| (4, 3, 2) | 20 | 12 | 6  | $-12J-6J_1-2J_2$   | 31.15956 |
| (5, 3, 2) | 30 | 12 | 6  | $-12J-6J_1-12J_2$  | 38.08896 |
| (0, 3, 3) | 0  | 12 | 12 | $-12J-12J_1+24J_2$ | -10.4052 |
| (1, 3, 3) | 2  | 12 | 12 | $-12J-12J_1+22J_2$ | -9.01932 |
| (2, 3, 3) | 6  | 12 | 12 | $-12J-12J_1+18J_2$ | -6.24756 |
| (3, 3, 3) | 12 | 12 | 12 | $-12J-12J_1+12J_2$ | -2.08992 |
| (4, 3, 3) | 20 | 12 | 12 | $-12J-12J_1+4J_2$  | 3.4536   |
| (5, 3, 3) | 30 | 12 | 12 | $-12J-12J_1-6J_2$  | 10.383   |
| (6, 3, 3) | 42 | 12 | 12 | $-12J-12J_1-18J_2$ | 18.69828 |
| (1, 3, 4) | 2  | 12 | 20 | $-12J-20J_1+30J_2$ | -45.9606 |
| (2, 3, 4) | 6  | 12 | 20 | $-12J-20J_1+26J_2$ | -43.1888 |
| (3, 3, 4) | 12 | 12 | 20 | $-12J-20J_1+20J_2$ | -39.0312 |
| (4, 3, 4) | 20 | 12 | 20 | $-12J-20J_1+12J_2$ | -33.4877 |
| (5, 3, 4) | 30 | 12 | 20 | $-12J-20J_1+2J_2$  | -26.5583 |
| (6, 3, 4) | 42 | 12 | 20 | $-12J-20J_1-10J_2$ | -18.243  |
| (7, 3, 4) | 56 | 12 | 20 | $-12J-20J_1-24J_2$ | -8.54184 |
| (4, 4, 0) | 20 | 20 | 0  | -20J               | 88.87    |
| (3, 4, 1) | 12 | 20 | 2  | $-20J-2J_1+10J_2$  | 74.09116 |
| (4, 4, 1) | 20 | 20 | 2  | $-20J-2J_1+2J_2$   | 79.63468 |
| (5, 4, 1) | 30 | 20 | 2  | $-20J-2J_1-8J_2$   | 86.56408 |
| (2, 4, 2) | 6  | 20 | 6  | $-20J-6J_1+20J_2$  | 51.46288 |
| (3, 4, 2) | 12 | 20 | 6  | $-20J-6J_1+14J_2$  | 55.62052 |
| (4, 4, 2) | 20 | 20 | 6  | $-20J-6J_1+6J_2$   | 61.16404 |
| (5, 4, 2) | 30 | 20 | 6  | $-20J-6J_1-4J_2$   | 68.09344 |
| (6, 4, 2) | 42 | 20 | 6  | $-20J-6J_1-16J_2$  | 76.40872 |
| (1, 4, 3) | 2  | 20 | 12 | $-20J-12J_1+30J_2$ | 20.98516 |
| (2, 4, 3) | 6  | 20 | 12 | $-20J-12J_1+26J_2$ | 23.75692 |
| (3, 4, 3) | 12 | 20 | 12 | $-20J-12J_1+20J_2$ | 27.91456 |
| (4, 4, 3) | 20 | 20 | 12 | $-20J-12J_1+12J_2$ | 33.45808 |
| (5, 4, 3) | 30 | 20 | 12 | $-20J-12J_1+2J_2$  | 40.38748 |
| (6, 4, 3) | 42 | 20 | 12 | $-20J-12J_1-10J_2$ | 48.70276 |
| (7, 4, 3) | 56 | 20 | 12 | $-20J-12J_1-24J_2$ | 58.40392 |
| (0, 4, 4) | 0  | 20 | 20 | $-20J-20J_1+40J_2$ | -17.342  |

| (1, 4, 4) | 2  | 20 | 20 | $-20J-20J_1+38J_2$ | -15.9561 |
|-----------|----|----|----|--------------------|----------|
| (2, 4, 4) | 6  | 20 | 20 | $-20J-20J_1+34J_2$ | -13.1844 |
| (3, 4, 4) | 12 | 20 | 20 | $-20J-20J_1+28J_2$ | -9.02672 |
| (4, 4, 4) | 20 | 20 | 20 | $-20J-20J_1+20J_2$ | -3.4832  |
| (5, 4, 4) | 30 | 20 | 20 | $-20J-20J_1+10J_2$ | 3.4462   |
| (6, 4, 4) | 42 | 20 | 20 | $-20J-20J_1-2J_2$  | 11.76148 |
| (7, 4, 4) | 56 | 20 | 20 | $-20J-20J_1-16J_2$ | 21.46264 |
| (8, 4, 4) | 72 | 20 | 20 | $-20J-20J_1-32J_2$ | 32.54968 |

$$\chi = \frac{Ng^{2}\beta^{2}}{3kT} \left[ \frac{\sum_{i=1}^{6} a_{i} \exp(-E_{i}/kT)}{\sum_{i=1}^{6} b_{i} \exp(-E_{i}/kT)} \right] = \frac{Ng^{2}\beta^{2}}{3kT} \frac{\sum S_{T}(S_{T}+1)(2S_{T}+1)\exp[-\frac{E(S_{T},S_{A},S_{B})}{kT}]}{\sum (2S_{T}+1)\exp[-\frac{E(S_{T},S_{A},S_{B})}{kT}]}$$
$$= \frac{Ng^{2}\beta^{2}}{3kT} \frac{A}{B}$$

$$\chi_M = \frac{\chi}{1 - (2zj'/Ng^2\beta^2)\chi}$$

- $S_{\rm T} = 1, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 6$
- $S_{\rm T} = 2, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 30$
- $S_{\rm T} = 3, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 84$
- $S_{\rm T} = 4, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 180$
- $S_{\rm T} = 5, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 330$  $S_{\rm T} = 6, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 546$
- $S_{\rm T} = 0, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 540$  $S_{\rm T} = 7, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 840$
- $S_{\rm T} = 8, S_{\rm T}(S_{\rm T}+1)(2S_{\rm T}+1) = 1224$

 $A = 6\exp(2J_1/kT) + 30\exp(6J_1/kT) + 84\exp(12J_1/kT) + 180\exp(20J_1/kT) + 6\exp(2J/kT) + 6\exp(2J/kT)$  $kT-2J_2/kT$ +30exp(2J/kT+2J\_1/kT+2J\_2/kT)+6exp(2J/kT+6J\_1/kT-6J\_2/kT)+30exp(2J/kT+6J\_1/kT-2J\_2/kT) )+84exp(2J/kT+6 $J_1/kT$ +4 $J_2/kT$ )+30exp(2J/kT+1 $2J_1/kT$ -8 $J_2/kT$ )+84exp(2J/kT+1 $2J_1/kT$ -2 $J_2/kT$ )+180  $\exp(2J/kT+12J_1/kT+6J_2/kT)+84\exp(2J/kT+20J_1/kT-10J_2/kT)+180\exp(2J/kT+20J_1/kT-2J_2/kT)+330e$  $xp(2J/kT+20J_1/kT+8J_2/kT)+30exp(6J/kT)+6exp(6J/kT+2J_1/kT-6J_2/kT)+30exp(6J/kT+2J_1/kT-2J_2/kT)$ )+84exp $(6J/kT+2J_1/kT+4J_2/kT)$ +6exp $(6J/kT+6J_1/kT-10J_2/kT)$ +30exp $(6J/kT+6J_1/kT-6J_2/kT)$ +84exp  $(6J/kT+6J_1/kT)+180\exp(6J/kT+6J_1/kT+8J_2/kT)+6\exp(6J/kT+12J_1/kT-16J_2/kT)+30\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT+12J_1/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/kT)+180\exp(6J/$  $kT-12J_2/kT$ )+84exp(6J/kT+12J\_1/kT-6J\_2/kT)+180exp(6J/kT+12J\_1/kT+2J\_2/kT)+330exp(6J/kT+12J\_1/kT)+330exp(6J/kT+12J\_1/kT)+330exp(6J/kT+12J\_1/kT)+330exp(6J/kT+12J\_1/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+330exp(6J/kT)+3  $T+12J_2/kT$ +30exp(6J/kT+20 $J_1/kT$ -20 $J_2/kT$ )+84exp(6J/kT+20 $J_1/kT$ -14 $J_2/kT$ )+180exp(6J/kT+20 $J_1/kT$ +20 $J_2/kT$ +20 $J_2/$  $T-6J_2/kT$ )+330exp(6J/kT+20 $J_1/kT$ +4 $J_2/kT$ )+546exp(6J/kT+20 $J_1/kT$ +16 $J_2/kT$ )+84exp(12J/kT)+30ex  $p(12J/kT+2J_1/kT-8J_2/kT)+84exp(12J/kT+2J_1/kT-2J_2/kT)+180exp(12J/kT+2J_1/kT+6J_2/kT)+6exp(12J/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2J_1/kT+2$  $J/kT+6J_1/kT-16J_2/kT)+30\exp(12J/kT+6J_1/kT-12J_2/kT)+84\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_1/kT-6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT+6J_2/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+18$  $kT+6J_1/kT+2J_2/kT$ )+330exp(12J/kT+6J\_1/kT+12J\_2/kT)+6exp(12J/kT+12J\_1/kT-22J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+6exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT+12J\_2/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(12J/kT)+30exp(1  $kT+12J_1/kT-18J_2/kT)+84\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-4J_2/kT)+330\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_1/kT-12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT+12J_2/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp(12J/kT)+180\exp$  $2J/kT+12J_1/kT+6J_2/kT$ )+546exp(12J/kT+12J\_1/kT+18J\_2/kT)+6exp(12J/kT+20J\_1/kT-30J\_2/kT)+30exp(12J/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/kT+12J\_1/k  $(12J/kT+20J_1/kT-26J_2/kT)+84\exp(12J/kT+20J_1/kT-20J_2/kT)+180\exp(12J/kT+20J_1/kT-12J_2/kT)+33$  $0\exp(12J/kT+20J_1/kT-2J_2/kT)+546\exp(12J/kT+20J_1/kT+10J_2/kT)+840\exp(12J/kT+20J_1/kT+24J_2/kT)+24J_2/kT)$ T + 180 exp(20J/kT) + 84 exp(20J/kT+2J\_1/kT-10J\_2/kT) + 180 exp(20J/kT+2J\_1/kT-2J\_2/kT) + 330 exp(20J/kT) + 230 exp(2

 $kT + 2J_1/kT + 8J_2/kT) + 30 \exp(20J/kT + 6J_1/kT - 20J_2/kT) + 84 \exp(20J/kT + 6J_1/kT - 14J_2/kT) + 180 \exp(20J/kT + 6J_1/kT - 6J_2/kT) + 330 \exp(20J/kT + 6J_1/kT + 4J_2/kT) + 546 \exp(20J/kT + 6J_1/kT - 16J_2/kT) + 6\exp(20J/kT + 12J_1/kT - 30J_2/kT) + 30 \exp(20J/kT + 12J_1/kT - 26J_2/kT) + 84 \exp(20J/kT + 12J_1/kT - 20J_2/kT) + 180 \exp(20J/kT + 12J_1/kT - 12J_2/kT) + 330 \exp(20J/kT + 12J_1/kT - 2J_2/kT) + 546 \exp(20J/kT + 12J_1/kT - 10J_2/kT) + 840 \exp(20J/kT + 12J_1/kT - 24J_2/kT) + 6\exp(20J/kT + 20J_1/kT - 38J_2/kT) + 30 \exp(20J/kT + 20J_1/kT - 34J_2/kT) + 840 \exp(20J/kT + 20J_1/kT - 24J_2/kT) + 180 \exp(20J/kT + 20J_1/kT - 20J_2/kT) + 330 \exp(20J/kT + 20J_1/kT - 20J_2/kT) + 30 \exp(20J/kT + 20J_1/kT - 34J_2/kT) + 840 \exp(20J/kT + 20J_1/kT - 20J_2/kT) + 30 \exp(20J/kT + 20J_1/kT - 10J_2/kT) + 546 \exp(20J/kT + 20J_1/kT + 2J_2/kT) + 840 \exp(20J/kT + 20J_1/kT + 16J_2/kT) + 1224 \exp(20J/kT + 20J_1/kT + 32J_2/kT) + 546 \exp(20J/kT + 20J_1/kT + 2J_2/kT) + 840 \exp(20J/kT + 20J_1/kT + 16J_2/kT) + 1224 \exp(20J/kT + 20J_1/kT + 32J_2/kT) + 2J_2/kT) + 546 \exp(20J/kT + 20J_1/kT + 2J_2/kT) + 840 \exp(20J/kT + 20J_1/kT + 16J_2/kT) + 1224 \exp(20J/kT + 20J_1/kT + 32J_2/kT) + 2J_2/kT) + 2J_2/kT) + 840 \exp(20J/kT + 20J_1/kT + 16J_2/kT) + 1224 \exp(20J/kT + 20J_1/kT + 32J_2/kT) + 2J_2/kT) + 2J_2/kT) + 2J_2/kT) + 2J_2/kT) + 2J_2/kT) + 2J_2/kT) + 2J_2/kT + 2J_2/kT) + 2J_2/kT + 2J_2/kT) + 2J_2/kT + 2J_2/kT + 2J_2/kT) + 2J_2/kT + 2J_2/kT$ 

 $B=1+3\exp(2J_1/kT)+5\exp(6J_1/kT)+7\exp(12J_1/kT)+9\exp(20J_1/kT)+3\exp(2J/kT)+\exp(2J/kT)+2J_1/kT)$  $4J_2/kT$  +  $3\exp(2J/kT+2J_1/kT-2J_2/kT)$  +  $5\exp(2J/kT+2J_1/kT+2J_2/kT)$  +  $3\exp(2J/kT+6J_1/kT-6J_2/kT)$  +  $5\exp(2J/kT+2J_2/kT)$  +  $5\exp(2J/kT)$  +  $p(2J/kT+6J_1/kT-2J_2/kT)+7exp(2J/kT+6J_1/kT+4J_2/kT)+5exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT-8J_2/kT)+7exp(2J/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J_1/kT+12J$  $2J_1/kT - 2J_2/kT$  + 9exp( $2J/kT + 12J_1/kT + 6J_2/kT$ ) + 7exp( $2J/kT + 20J_1/kT - 10J_2/kT$ ) + 9exp( $2J/kT + 20J_1/kT - 10J_2/kT$ )  $2J_2/kT$ +11exp(2J/kT+2 $0J_1/kT$ +8 $J_2/kT$ )+5exp(6J/kT)+3exp(6J/kT+2 $J_1/kT$ - $6J_2/kT$ )+5exp(6J/kT+2 $J_1/kT$ -6 $J_2/kT$ +2 $J_1/kT$ +2 $J_2/kT$ +2 $J_1/kT$ +2 $J_2/kT$ +2 $J_1/kT$ +2 $J_1/kT$ +2 $J_2/kT$ +2 $J_$  $kT-2J_2/kT$ )+7exp(6J/kT+2J\_1/kT+4J\_2/kT)+exp(6J/kT+6J\_1/kT-12J\_2/kT)+3exp(6J/kT+6J\_1/kT-10J\_2/kT)  $+5\exp(6J/kT+6J_1/kT-6J_2/kT)+7\exp(6J/kT+6J_1/kT)+9\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+12J_1/kT)+9\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT+6J_1/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(6J/kT)+3\exp(2$  $kT-16J_2/kT$ )+5exp( $6J/kT+12J_1/kT-12J_2/kT$ )+7exp( $6J/kT+12J_1/kT-6J_2/kT$ )+9exp( $6J/kT+12J_1/kT+2J_2/kT$ )+7exp( $6J/kT+12J_1/kT+2J_2/kT$ )+9exp( $6J/kT+12J_1/kT+2J_2/kT$ )+7exp( $6J/kT+12J_1/kT+2J_2/kT$ )+9exp( $6J/kT+12J_2/kT$ )+9exp( $6J/kT+12J_1/kT+2J_2/kT$ )+9exp( $6J/kT+12J_2/kT$ )+9exp( $6J/kT+12J_2/kT+12J_2/kT$ )+9exp( $6J/kT+12J_2/kT$ )+9exp( $6J/kT+12J_2/kT$ )+9exp( $6J/kT+12J_2/kT$ )+9exp(6J/kT+12/kT+11exp(6J/kT+12J<sub>1</sub>/kT+12J<sub>2</sub>/kT)+5exp(6J/kT+20J<sub>1</sub>/kT-20J<sub>2</sub>/kT)+7exp(6J/kT+20J<sub>1</sub>/kT-14J<sub>2</sub>/kT)  $+9\exp(6J/kT+20J_1/kT-6J_2/kT)+11\exp(6J/kT+20J_1/kT+4J_2/kT)+13\exp(6J/kT+20J_1/kT+16J_2/kT)+7e$  $xp(12J/kT) + 5exp(12J/kT + 2J_1/kT - 8J_2/kT) + 7exp(12J/kT + 2J_1/kT - 2J_2/kT) + 9exp(12J/kT + 2J_1/kT + 6J_2/kT) + 9exp(12J/kT + 2J_1/kT + 2J_1/kT + 6J_2/kT) + 9exp(12J/kT + 2J_1/kT + 2J_1/kT + 6J_2/kT) + 9exp(12J/kT + 2J_1/kT + 2J_1/kT + 2J_1/kT + 2J_1/kT) + 9exp(12J/kT + 2J_1/kT + 2J_1/kT + 2J_1/kT) + 9exp(12J/kT + 2J_1/kT + 2J$ T)+3exp(12J/kT+6 $J_1/kT$ -16 $J_2/kT$ )+5exp(12J/kT+6 $J_1/kT$ -12 $J_2/kT$ )+7exp(12J/kT+6 $J_1/kT$ -6 $J_2/kT$ )+9e  $xp(12J/kT+6J_1/kT+2J_2/kT)+11exp(12J/kT+6J_1/kT+12J_2/kT)+exp(12J/kT+12J_1/kT-24J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+6J_1/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT)+3exp(12J/kT+2J_2/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp(12J/kT)+3exp($  $2J/kT+12J_1/kT-22J_2/kT$ +5exp(12J/kT+12J\_1/kT-18J\_2/kT)+7exp(12J/kT+12J\_1/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT-12J\_2/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9exp(12J/kT)+9  $J/kT+12J_1/kT-4J_2/kT$ )+11exp(12 $J/kT+12J_1/kT+6J_2/kT$ )+13exp(12 $J/kT+12J_1/kT+18J_2/kT$ )+3exp(12  $J/kT+20J_1/kT-30J_2/kT)+5\exp(12J/kT+20J_1/kT-26J_2/kT)+7\exp(12J/kT+20J_1/kT-20J_2/kT)+9\exp(12J/kT+20J_1/kT-20J_2/kT)+9\exp(12J/kT+20J_1/kT+20J_1/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT+20J_2/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp(12J/kT)+9\exp$  $kT+20J_1/kT-12J_2/kT$ +11exp(12J/kT+20J\_1/kT-2J\_2/kT)+13exp(12J/kT+20J\_1/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT+10J\_2/kT)+15exp(12)/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/kT+10J\_2/  $J/kT+20J_1/kT+24J_2/kT)+9\exp(20J/kT)+7\exp(20J/kT+2J_1/kT-10J_2/kT)+9\exp(20J/kT+2J_1/kT-2J_2/kT)$  $+11\exp(20J/kT+2J_1/kT+8J_2/kT)+5\exp(20J/kT+6J_1/kT-20J_2/kT)+7\exp(20J/kT+6J_1/kT-14J_2/kT)+9ex$  $p(20J/kT+6J_1/kT-6J_2/kT)+11exp(20J/kT+6J_1/kT+4J_2/kT)+13exp(20J/kT+6J_1/kT+16J_2/kT)+3exp(20J/kT+6J_1/kT+6J_2/kT)+3exp(20J/kT+6J_1/kT+6J_2/kT)+3exp(20J/kT+6J_1/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT+6J_2/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J/kT)+3exp(20J$  $J/kT+12J_1/kT-30J_2/kT)+5\exp(20J/kT+12J_1/kT-26J_2/kT)+7\exp(20J/kT+12J_1/kT-20J_2/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(20J/kT)+9\exp(2$  $kT+12J_1/kT-12J_2/kT$ +11exp(20J/kT+12J\_1/kT-2J\_2/kT)+13exp(20J/kT+12J\_1/kT+10J\_2/kT)+15exp(20J/kT)+12J\_1/kT+10J\_2/kT)  $J/kT+12J_1/kT+24J_2/kT)+\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-38J_2/kT)+5\exp(20J/kT+20J_1/kT-38J_2/kT)+5\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT+20J_1/kT-40J_2/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3\exp(20J/kT)+3$  $kT + 20J_1/kT - 34J_2/kT) + 7\exp(20J/kT + 20J_1/kT - 28J_2/kT) + 9\exp(20J/kT + 20J_1/kT - 20J_2/kT) + 11\exp(20J/kT + 20J_2/kT) + 11\exp(20J/kT) + 11\exp(20J/kT + 20J_2/kT) + 11\exp(20J/kT + 20J_2/kT) + 11\exp(20J/kT) + 11\exp(20J/kT)$  $kT+20J_1/kT-10J_2/kT$ +13exp(20J/kT+20J\_1/kT+2J\_2/kT)+15exp(20J/kT+20J\_1/kT+16J\_2/kT)+17exp(20)/kT+20J\_1/kT+16J\_2/kT)  $J/kT + 20J_1/kT + 32J_2/kT$ 



Section 4. Supplementary Physical Characterizations

**Fig. S18.** (a) TGA curve of **1**. The first weight loss of 6.92 % in the range of 40 ~ 424 °C are attributed to the loss of all lattice water molecules and coordinated water molecules (calcd. 7.46%); the second weight loss at ca. 560 °C corresponds to loss of the  $CO_3^{2-}$  ions; (b) TGA curve of **2**. The first weight loss of 6.40 % in the range of 40 ~ 432 °C are attributed to the loss of all lattice water molecules and coordinated water molecules (calcd. 7.45%); the second weight loss in the range of 506 ~ 560 °C corresponds to loss of the  $CO_3^{2-}$  ions.



Fig. S19. IR spectrum for 1 showed the characteristic peaks of carbonate at 1461 and 1365.



Fig. S20. IR spectrum for 2 showed the characteristic peaks of carbonate at 1459 and 1378.



Fig. S21. Energy-dispersive X-ray (EDX) analysis of the microtube of 1.