Supporting Information

Asymmetric cyclopropanation of olefins catalysed by Cu(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*)

Brunilde Castano^{*a*}, Stefano Guidone,^{*a,e*} Emma Gallo,^{*a*} Fabio Ragaini,^{*a*} Nicola Casati,^{*b*} Piero Macchi,^{*c*} Massimo Sisti^{*d*} and Alessandro Caselli^{**a*}

^a Dipartimento di Chimica, Università di Milano, and ISTM-CNR; Via Golgi 21, 20133 Milano, Italy. Fax: (+39)02 5031 4405; Tel: (+39)02 5031 4372; E-mail: <u>alessandro.caselli@unimi.it</u>

^b Laboratory for Synchrotron Radiation - Condensed Matter, Swiss Light Source, Paul Scherrer Institut, Villigen PSI CH-5232 Villigen Switzerland.

^c Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH3012, Bern, Switzerland.

^d Dip. Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy.

^e Present address: EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST

General. NMR spectra were recorded on Bruker Avance 300-DRX or Avance 400-DRX spectrometers. Chemical shifts (ppm) are reported relative to TMS. The ¹H NMR signals of the compounds described in the following have been attributed by COSY and NOESY techniques. Assignments of the resonance in ¹³C NMR were made using the APT pulse sequence and HSQC and HMBC techniques. The ¹⁵N NMR signals of the compound described have been attributed by HMBC technique. Infrared spectra were recorded on a BIO-RAD FTS-7 spectrophotometer. Elemental analyses and mass spectra were recorded in the analytical laboratories of Milan University. GC-MS analysis were performed on a Shimadzu GCMS-QP5050A instrument. Optical rotation were measured on a Perkin Elmer instruments model 343 plus; $[\alpha]_D$ values are given in 10⁻¹ deg cm² g⁻¹. Microwave assisted reactions were performed with a MILESTONE® microSYNT multimode labstation, using 12 mL sealed glass vessels. The internal temperature was detected with a fiber optic sensor. Unless otherwise specified, all the reactions were carried out in a dinitrogen atmosphere employing standard Schlenk techniques and magnetic stirring. Solvents were dried prior use by standard procedures and stored under dinitrogen. α -Methylstyrene was distilled over CaH₂ and stored under dinitrogen. Copper(I) triflate benzene complex, copper(I) tetrakisacetonitrile esafluorophosphate complex and copper(I) tetrakis-acetonitrile tetrafluoro borate

complex were synthesized following literature methods.¹ All other starting materials were commercial products and were used as received. The synthesis and characterization of bis(sulfonamides) **3a**, the macrocycles **4a** and the copper(I) complexes **6a** were already reported.² The synthesis and characterization of bis(sulfonamides) 3c-d, the macrocycles 4c-d and the copper(I) complexes 6c-d, 8d-10d were reported in a previous communication.³ The collected analytical data for *cis* and *trans* ethyl-2-methyl-2-phenylcyclopropanecarboxylate.⁴, *cis* and *trans* 2-methyl-2-phenylcyclopropanecarboxylate,⁵ ethyl-2cis *tert*-butyl and trans phenylcyclopropanecarboxylate,⁶ cis and trans ethyl-2-p-tolyl-cyclopropanecarboxylate,⁷ cis and 2-(4-chlorophenyl)cyclopropanecarboxylate,⁷ ethyl ethyl-2,2trans diphenylcyclopropanecarboxylate.⁶ ethyl 2,2-dimethyl-3-(2cis and trans methylpropenyl)cyclopropanecarboxylate chrysanthemate),⁵ dimethyl-2-(ethyl oxabicyclo[3.1.0]hex-3-ene-3.6-dicarboxylate⁸ ethyl-2and cis and trans hexylcyclopropanecarboxylate⁹ are in agreement with those reported in the literature.

Synthesis of 3b

This synthesis can be performed in the air. A solution of 1-tosylaziridine **1a** (2.24 g, 11.5 mmol) and 1-naphthylmethylamine (0.811 g, 5.16 mmol) in distilled toluene (11 mL) was stirred and heated under reflux for 5 h. The mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 6:4 as eluant, obtaining pure amine **3b** (2.14 g, 5.04 mmol, yield: 75%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.14 (1H, d, *J* = 8.3 Hz, *H*ⁱ), 7.86 (1H, d, *J* = 8.3 Hz, Ar*H*), 7.78 (1H, m, Ar*H*), 7.54 (4H, d, *J* = 8.0 Hz, *H*ⁿ) overlapping with 7.61-7.49 (2H, m, Ar*H*), 7.42-7.32 (2H, m, Ar*H*), 7.19 (4H, d, *J* = 8.0 Hz, *H*^o), 4.83 (2H, bs, N*H*), 4.00 (2H, br, CH_2^3), 2.90 (4H, m, CH_2), 2.66 (4H, m, CH_2), 2.38 (6H, s, CH_3^4). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 143.5 (*C*), 136.7 (*C*), 134.0 (*C*), 132.0 (*C*), 129.8 (*C*H), 129.0 (*C*⁰H), 127.1 (*C*ⁿH), 126.3 (*C*H), 125.4 (*C*H), 123.7 (*C*ⁱH), 54.2(*C*H₂), 40.8 (*C*³H₂), 21.6 (*C*⁴H₃). Signals relative to quaternary carbons, aromatic *C*H and *C*H₂ were not detected. Elemental Analysis: Found: C, 63.1; H, 6.2; N, 7.5% Calc. for C₂₉H₃₃N₃O₄S₂: C, 63.1; H, 6.0; N, 7.6%.

Synthesis of 2e-(2S) and 3e-(2S,2'S)

This synthesis can be performed in the air. A solution of (*S*)-2-isopropyl-1-tosylaziridine **1b** (1.732 g, 7.23 mmol) and 1-naphthylmethylamine (0.494 g, 3.14 mmol) in distilled toluene (15 mL) was stirred and heated under reflux for 5 h. The mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining monoamine **2e-(2S)** (0.875 g, 2.21 mmol, yield: 70%) and pure amine **3e-(2S,2'S)** (0.600 g, 0.944 mmol, yield: 30%).

Synthesis of 3e-(2S,2'S) from 2e-(2S) under conventional heating

A solution of (S)-2-isopropyl-1-tosylaziridine **1b** (0.258 g, 1.08 mmol) and monoamine **2e-(2S)** (0.349 g, 0.88 mmol) in toluene (10 mL) was stirred and heated under reflux for 33 h. The mixture

was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining the amine **3e-(2***S***,2'S)** (0.330 g, 0.519 mmol, yield: 74%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.02 (1H, dd, *J* = 7.7 Hz, *J* = 1.3 Hz, *H*⁵), 7.89 (1H, dd, *J* = 7.7 Hz, *J* = 1.3 Hz, *H*⁶), 7.81 (1H, dd, *J* = 7.7 Hz, *J* = 1.3 Hz, *H*^d), 7.62 (2H, d, *J* = 7.9 Hz, *H*^a), 7.55 (1H, t, *J* = 7.7 Hz, *H*^g), 7.54 (1H, t, *J* = 7.7 Hz, *H*^h), 7.42 (1H, t, *J* = 7.7 Hz, *H*^c), 7.38 (1H, d, *J* = 7.7 Hz, *H*^b), 7.08 (2H, d, *J* = 7.9 Hz, *H*^o), 4.14 (1H, d, *J* = 13.4 Hz, *H*⁶), 4.08 (1H, d, *J* = 13.4 Hz, *H*⁶), 3.09 (1H, ddd, *J* = 6.8 Hz, *J* = 6.8 Hz, *J* = 4.4 Hz, *H*²), 2.73 (1H, dd, *J* = 12.4 Hz, *J* = 6.8 Hz, *J* = 6.8 Hz, *J* = 6.8 Hz, *J* = 6.8 Hz, *J* = 6.81 Hz, *CH*₃⁴), 0.79 (3H, d, *J* = 6.81 Hz, *CH*₃⁵). The signals relative to NH were not detected. ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 129.6 (*C*^aH), 129.0 (*C*^fH), 128.5 (*C*^dH), 127.2 (*C*^oH), 126.7 (*C*H), 126.6 (*C*H), 126.1 (*C*H), 125.5 (*C*H), 123.6 (*C*ⁱH), 58.2 (*C*²H), 50.9 (*C*⁶H₂), 49.0 (*C*¹H₂), 30.5 (*C*³H), 21.5 (*C*⁷H₃), 18.9 (*C*⁴H₃), 18.4 (*C*⁵H₃). The signals relative to quaternary carbons were not detected. Elemental Analysis: Found: C, 69.8; H, 7.0; N, 6.9% Calc. for C₂₃H₂₈N₂O₂S: C, 69.7; H, 7.1; N, 7.1%. MS (EI): m/z 397 (M⁺+1). [α]_D²⁰ = - 3.611° (c 1.082 in CHCl₃).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.18 (1H, d, *J* = 8.0 Hz, *H*ⁱ), 7.85-7.76 (2H, m, *H*^d and *H*^f), 7.75 (4H, d, *J* = 8.2 Hz, *H*ⁿ), 7.51-7.38 (3H, m, *H*^c, *H*^h and *H*^g), 7.34 (1H, d, *J* = 8.0 Hz, *H*^b), 7.23 (4H, d, *J* = 8.2 Hz, *H*^o), 4.99 (2H, d, *J* = 6.0 Hz, N*H*), 4.04 (1H, d, *J* = 13.1, *H*⁶), 3.80 (1H, d, *J* = 13.1 Hz, *H*^{6'}), 3.45 (2H, m, *H*²), 2.55-2.35 (4H, m, *H*¹), overlapping with 2.38 (6H, s, C*H*₃⁷), 1.79

(2H, m, H^3), 0.53 (6H, d, J = 6.9 Hz, CH_3^4), 0.52 (6H, J = 6.9 Hz, CH_3^5). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 143.2 (*C*), 138.6 (*C*), 133.9 (*C*), 132.2 (*C*), 129.6 (*C*ⁿH), 128.6 (*C*H), 128.2 (*C*H), 127.1 (*C*^oH), 126.3 (*C*H), 125.8 (*C*H), 125.3 (*C*H), 124.3 (*C*ⁱH), 56.9 (*C*⁶H₂), 55.9 (*C*²H), 54.9 (*C*¹H₂), 29.3 (*C*³H), 21.6 (*C*⁷H₃), 17.9 (*C*⁴H₃), 16.9 (*C*⁵H₃). A signal relative to a quaternary carbon was not detected. Elemental Analysis: Found: C, 66.3; H, 7.2; N, 6.3% Calc. for C₃₅H₄₅N₃O₄S₂: C, 66.1; H, 7.1; N, 6.6%. MS (EI): m/z 636 (M⁺+1). $[\alpha]_D^{20} = + 9.92$ (*c* 1.31 in CHCl₃).

Synthesis of 2f-(1R,2S) under microwave heating

This synthesis can be performed in the air. A solution of (*S*)-2-isopropyl-1-tosylaziridine **1b** (0.811 g, 3.39 mmol) and (*R*)-1-(1-naphthyl)ethyl amine (0.529 g, 3.09 mmol) in toluene (21 mL) was added in a microwave tube. The solution was stirred and heated by microwave irradiation for 3 h at 150 °C. The resulting mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining a yellow solid **2f-(1***R***,2***S***)** (0.904 g, 2.20 mmol, yield: 71%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.03 (1H, m, *H*ⁱ), 7.89 (1H, m, Ar*H*), 7.78 (2H, d, *J* = 8.4 Hz, *H*ⁿ) overlapping with 7.79-7.75 (1H, m, Ar*H*) 7.52-7.45 (4H, m, Ar*H*), 7.25 (2H, d, *J* = 8.4 Hz, *H*^o), 5.22 (1H, br, N*H*), 4.35 (1H, q, *J* = 6.6 Hz, *H*⁶), 3.08 (1H, m, *H*²), 2.46-2.42 (2H, m, *H*¹), 2.40 (3H, s, C*H*₃⁸), 1.85 (1H, dh, *J* = 13.4 Hz, *J* = 6.8 Hz, *H*³), 1.36 (3H, d, *J* = 6.6 Hz, C*H*₃⁷), 0.81 (3H, d, *J* = 6.8 Hz, C*H*₃⁴), 0.78 (3H, d, *J* = 6.8 Hz, C*H*₃⁵) One NH signal is too broad to be detected.

¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 143.2 (*C*), 140.8 (*C*), 138.2 (*C*), 134.1 (*C*),131.3 (*C*),129.6 (*C*⁰H), 129.1 (*C*H),127.4 (*C*H), 127.2 (*C*H), 125.9 (*C*H), 125.7 (*C*H), 125.5 (*C*H), 122.8 (*C*ⁱH),122.6 (*C*H), 59.0 (*C*²H), 53.3 (*C*⁶H), 47.4 (*C*¹H₂), 30.4 (*C*³H), 23.5 (*C*⁷H₃), 21.5 (*C*⁸H₃), 18.8 (*C*⁴H₃), 18.4 (*C*⁵H₃). ¹⁵N NMR (40 MHz; CDCl₃; T = 300 k) δ 98.0 (*N*HTs), 40.1 (*N*HC⁶). Elemental Analysis: Found: C, 70.4; H, 7.4; N, 6.6% Calc. for C₂₄H₃₀N₂O₂S: C, 70.2; H, 7.4; N, 6.8%. [α]_D²⁰ = + 9.92 (*c* 1.31 in CHCl₃).

Synthesis of 3f-(1R,2S,2'S) from 2f-(1R,2S) under conventional heating

A solution of (S)-2-isopropyl-1-tosylaziridine **1b** (0.307 g, 1.28 mmol) and monoamine **2f**-(**1**R,**2**S) (0.478 g, 1.16 mmol) in toluene (10 mL) was stirred and heated under reflux for 90 h. The mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining a yellow solid **3f**-(**1**R,**2**S,**2**'S) (0.302 g, 0.464 mmol, yield: 40%).

Direct synthesis of 3f-(1*R*,2*S*,2'*S*)

A solution of (*S*)-2-isopropyl-1-tosylaziridine **1b** (0.781 g, 3.21 mmol) and (*R*)-1-(1naphthyl)ethyl amine (0.514 g, 3.0 mmol) in toluene (21 mL) was added in a microwave tube. The solution was stirred and heated by microwave irradiation for 3h at 150°C. The resulting mixture, without any purification, was added to a solution of (*S*)-2-isopropyl-1-tosylaziridine **1b** (0.785 g, 3.28 mmol) in distilled toluene (4 mL) and was stirred and heated under reflux for 45 h. The

mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining a yellow solid **3f-(1***R***,2***S***,2'***S***)** (0.785 g, 1.21 mmol, yield: 40%).

¹H NMR (400 MHz; CDCl₃; T = 300 k) δ 7.94 (1H, m, *H*ⁱ) 7.79(4H, d, *J* = 8.0 Hz, *H*ⁿ) overlapping with 7.79 (1H, m, Ar*H*), 7.73 (1H, dd, *J* = 5.8 Hz, *J* = 3.4 Hz, Ar*H*), 7.45-7.42 (2H, m, Ar*H*), 7.40-7.39 (2H, m, Ar*H*), 7.29 (4H, d, *J* = 8.0 Hz, *H*^o), 4.66 (2H, d, *J* = 7.9 Hz, N*H*), 4.59 (1H, q, *J* = 6.6 Hz, *H*⁶), 3.26 (1H, m, *H*²), 2.46 (2H, dd, *J* = 13.4 Hz, *J* = 5.1 Hz, *H*¹), 2.41 (6H, s, CH₃⁸), 1.55 (2H, m, *H*³), 1.20 (3H, d, *J* = 6.6 Hz, CH₃⁷) 0.56 (6H, d, *J* = 6.9 Hz, CH₃⁴), 0.19 (6H, d, *J* = 6.8 Hz, CH₃⁵). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 143.4 (*C*), 138.2 (*C*), 138.0 (*C*), 134.1 (*C*), 132.1 (*C*), 129.7 (*C*ⁿH), 128.8 (*C*H), 128.2 (*C*H), 127.3 (*C*^oH), 125.6 (*C*H), 125.5 (*C*H), 125.1 (*C*H), 125.0 (*C*H), 123.9 (*C*H), 56.6 (*C*²H), 53.6 (*C*⁶H), 52.3 (*C*¹H₂), 27.6 (*C*³H), 21.6 (*C*⁸H₃), 19.3 (*C*⁴H₃), 14.8 (*C*⁵H₃), 12.4 (*C*⁷H₃). ¹⁵N NMR (40 MHz; CDCl₃; T = 300 k) δ 94.0 (*N*HTs), 38.3 (*N*HC⁶). Elemental Analysis: Found: C, 66.6; H, 7.6; N, 6.5% Calc. for C₃₆H₄₇N₃O₄S₂: C, 66.5; H, 7.3; N, 6.5%. [α]_D²⁰ = - 47.22 (*c* 1.37 in CHCl₃).

Synthesis of 2g-(1*S*,2*S*) and 3g-(1*S*,2*S*, 2'*S*)

This synthesis can be performed in the air. A solution of (*S*)-2-isopropyl-1-tosylaziridine **1b** (2.080 g, 8.7 mmol) and (*S*)-1-(1-naphthyl)ethyl amine (0.498 g, 2.90 mmol) in distilled toluene (38 mL) was stirred and heated under reflux for 220 h. The mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining monoamine **2g-(1***S***,2***S***)** (0.686 g, 1.67 mmol, yield: 58%) and pure amine **3g-(1***S***,2***S***, 2'***S***) (0.754 g, 1.16 mmol, yield: 40%).**

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.15 (1 H, m, Ar*H*), 7.90 (1H, m, Ar*H*), 7.78 (1H, dd, *J* = 7.9 Hz, *J* = 1.8 Hz, Ar*H*), 7.55-7.43 (6H, m, Ar*H*), 6.96 (2H, d, *J* = 7.9 Hz, Ar*H*), 5.09 (1H, bs, N*H*), 4.38 (1H, q, *J* = 6.5 Hz, *H*⁶), 2.92 (1H, m, *H*²), 2.59 (1H, dd, , *J* = 12.3 Hz, *J* = 5.5 Hz, *H*¹), 2.26 (3H, s, CH₃⁸), 2.19 (1H, dd, *J* = 12.3 Hz, *J* = 4.5 Hz, *H*¹), 1.84 (1H, m, *H*³), 1.40 (3H, d, *J* = 6.5 Hz, CH₃⁷), 0.88 (3H, d, *J* = 6.8 Hz, CH₃⁴), 0.83 (3H, d, *J* = 6.8 Hz, CH₃⁵). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 142.9 (*C*), 140.9 (*C*), 137.7 (*C*), 134.2 (*C*), 131.4 (*C*), 129.4 (*C*H), 129.1 (*C*H), 127.5 (*C*H), 127.0 (*C*H), 125.9 (*C*H), 125.8 (*C*H), 125.6 (*C*H), 123.3 (*C*H), 123.1 (*C*H), 59.3 (*C*²H), 54.5 (*C*⁶H), 48.0 (*C*¹H₂), 30.3 (*C*³H), 23.7 (*C*⁷H₃), 21.4 (*C*⁸H₃), 19.0 (*C*⁴H₃), 18.8 (*C*⁵H₃). Elemental Analysis: Found: C, 70.3; H, 7.5; N, 6.7% Calc. for C₂₄H₃₀N₂O₂S: C, 70.2; H, 7.4; N, 6.8%. [α]_D²⁰ = -45.09 (c 1.02 in CHCl₃).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.73 (1H, d, *J* = 8.2 Hz, *H*ⁱ), 7.73 (2H, d, *J* = 7.8 Hz, Ar*H*), 7.70 (4H, d, *J* = 8.3 Hz, *H*ⁿ), 7.56 (1H, pt, *J* = 8.2 Hz, Ar*H*), 7.43-7.37 (2H, m, Ar*H*), 7.29 (1H, m, Ar*H*), 7.24 (4H, d, *J* = 8.3 Hz, *H*^o), 5.36 (2H, d, *J* = 5.4 Hz, N*H*), 5.13 (1H, q, *J* = 6.5 Hz, *H*⁶), 3.68 (2H, m, *H*²), 2.48-2.42 (4H, m, *H*¹), overlapping with 2.42 (6H, s, C*H*₃⁸), 1.76 (2H, m, *H*³), 1.48 (3H, d, *J* = 6.5 Hz, C*H*₃⁷), 0.68 (6H, d, *J* = 7.0 Hz, C*H*₃⁴), 0.35 (6H, d, *J* = 7.0 Hz, C*H*₃⁵) ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 143.0 (*C*^{*p*}), 139.3 (*C*), 137.9 (*C*), 134.1 (*C*), 131.7 (*C*), 129.5 (*C*ⁿH), 128.4 (CH), 127.4 (CH), 127.1 (*C*^oH), 125.9 (CH), 125.2 (CH), 124.9 (CH), 124.6 (CH), 54.7 (*C*²H), 53.3 (*C*⁶H), 48.1 (*C*¹H₂), 29.6 (*C*³H), 21.7 (*C*⁸H₃), 18.0 (*C*⁴H₃), 15.9 (*C*⁵H₃), 11.1 (*C*⁷H₃). A signal relative to an aromatic carbon was not detected. Elemental Analysis: Found: C,

66.4; H, 7.3; N, 6.7% Calc. for C₃₆H₄₇N₃O₄S₂: C, 66.5; H, 7.3; N, 6.5%. MS (EI): m/z 650 (M⁺+1). $[α]_D^{20} = -33.65$ (c 0.28 in CHCl₃).

Direct synthesis of 2h-(2S) and 3h-(2S,2'S)

Triethylamine (2.4 mL) was added to a solution of L-valinole (0.837 g, 8.12 mmol) in CH₂Cl₂ (30 mL). Then trifluoromethanesulfonic anhydride (5.031 g, 17.8 mmol) was added dropwise to the solution cooled to -78°C. The resulting yellow solution was heated to -30 °C and stirred overnight. The solution was washed with HCl 0.1 M (120 mL) and brine (120 mL); organic phase was anhydrified with Na₂SO₄, filtered and diluted with CH₂Cl₂ (30 mL). The solution was cooled to -40 °C and a solution of 1-naphthylmethylamine (0.441 g, 2.80 mmol) in CH₂Cl₂ (10 mL) was added dropwise. After 30°, the solution was carried to room temperature. A white suspension immediately formed. After 48 h, reaction was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant. Main product was monoamine **2h-(2S)** (560 mg, 1.50 mmol, yield: 53%), while amine **3h-(2S,2'S)** was obtained mixed with unreacted aziridine **1c** and was recrystallized from n-hexane in CH₂Cl₂ (182 mg, 0.310 mmol, yield: 11%). Crystals suitable for X-Ray analysis of monoamine **2h-(2S)** were obtained by layering n-hexane (4 mL) to a CH₂Cl₂ solution (5 mL).

Synthesis of 2h-(2S) and 3h-(2S,2'S)

A solution of 1-naphthylmethylamine (0.306 g, 1.94 mmol) in distilled CH_2Cl_2 (10 mL) was added dropwise to a solution of (*S*)-2-isopropyl-1-triflylaziridine 1c (0.879 g, 4.01 mmol) in distilled CH_2Cl_2 (20 mL) cooled to.-40°C. After 30 minutes the solution was carried to room temperature. A white suspension immediately formed. The reaction was followed by TLC. After 48 h the white suspension was filtered giving pure monoamine 2h-(2S) (0.226 g, 0.604 mmol, yield: 31%); pure amine 3h-(2S,2'S) (0.600 g, 1.01 mmol, yield: 52%) were obtained by layering *n*hexane (5 mL) to a CH_2Cl_2 solution (5 mL).

¹H NMR (400 MHz; CDCl₃; T = 300 k) δ 8.09 (1H, d, J = 8.0 Hz, H^{i}), 7.88 (1H, d, J = 8.0 Hz, H^{f}), 7.80 (1H, pst, J = 8.0 Hz, ArH), 7.61-7.48 (2H, m, H^{h-g}), 7.43-7.42 (2H, m, ArH), 4.28 (1H, d, J = 13.2 Hz, $H^{6'}$), 4.25 (1H, d, J = 13.2 Hz, H^{6}), 3.35 (1H, ddd, J = 8.0 Hz, J = 4.2 Hz, J = 4.8 Hz, H^{2}), 3.02 (1H, dd, J = 12.9 Hz, J = 4.2 Hz, $H^{1'}$), 2.80 (1H, dd, J = 12.9 Hz, J = 4.8 Hz, H^{1}), 1.86 (1H, dq, J = 8.0 Hz, J = 6.8 Hz, H^{3}), 0.97 (3H, d, J = 6.8 Hz, CH_{3}^{4}), 0.92 (3H, d, J = 6.8 Hz, CH_{3}^{5}), 0.51 (1H, bs, NH). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 129.0 (CH), 128.5 (C^{4} H), 126.5 (CH), 126.0 (CH), 125.4 (C^{i} H), 123.6 (C^{g} H), 61.0 (C^{2} H), 52.1 (C^{6} H₂), 49.5 (C^{1} H₂), 30.4 (C^{3} H), 19.2 (C^{4} H₃), 18.8 (C^{5} H₃). Signals relative to quaternary carbons were not detected. ¹⁹F NMR (282 MHz; CDCl₃; T = 300 k) δ -77.7 (m). Elemental Analysis: Found: C, 54.7; H, 5.8; N, 7.3% Calc. for C₁₇H₂₁F₃N₂O₂S: C, 54.5; H, 5.6; N, 7.5%.

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.14 (1H, d, *J* = 8.1 Hz, *H*ⁱ), 7.86 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.81 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.58-7.42 (4H, m, Ar*H*), 5.04 (2H, br, N*H*), 4.21 (1H, d, *J* =

13.2 Hz, H^6), 4.05 (1H, d, J = 13.2 Hz, $H^{6'}$), 3.61 (2H, m, H^2), 2.72-2.58 (4H, m, H^1), 1.92 (2H, m, H^3), 0.81 (6H, d, J = 6.9 Hz, CH_3^4), 0.65 (6H, d, J = 6.9 Hz, CH_3^5). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 134.1 (C), 133.1 (C), 132.2 (C), 128.9 (CH), 128.8 (CH), 128.6 (CH), 126.5 (CH), 126.1 (CH), 125.4 (CH), 123.9 (C^{i} H), 119.5 (C_7 , q, J = 321 Hz), 58.7 (C^2 H), 57.0 (C^6 H₂), 56.2 (C^{1} H₂), 29.4 (C^3 H), 18.4 (C^4 H₃), 16.6 (C^5 H₃). ¹⁹F NMR (282 MHz; CDCl₃; T = 300 k) δ -77.6 (bs). Elemental Analysis: Found: C, 46.6; H, 5.4; N, 7.1% Calc. for C₂₃H₃₁F₆N₃O₄S₂: C, 46.7; H, 5.3; N, 7.1%.

Synthesis of 2i-(1R,2S) and 3i-(1R,2S,2'S)

A solution of (*R*)-1-(1-naphthyl)ethyl amine (0.374 g, 2.18 mmol) in distilled CH₂Cl₂ (10 mL) was added dropwise to a solution of (*S*)-2-isopropyl-1-triflylaziridine **1c** (0.968 g, 4.46 mmol) in distilled CH₂Cl₂ (30 mL) cooled to.- 40 °C. After 30 minutes the solution was carried to room temperature. A white suspension immediately formed. The reaction was followed by TLC. After 90 h, the mixture was dried and purified by silica gel chromatography using *n*-hexane:ethyl acetate = 7:3 as eluant, obtaining a monoamine **2i-(1***R***,2***S***)** (0.0932 g, 0.240 mmol, yield: 11%) and pure amine **3i-(1***R***,2***S***,2'***S***) (1.180 g, 1.95 mmol, yield: 89%).**

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.15 (1H, d, *J* = 8.2 Hz, *H*ⁱ), 7.90 (1H, d, *J* = 7.7 Hz, Ar*H*), 7.79 (1H, d, *J* = 8.0 Hz, Ar*H*), 7.59-7.47 (4H, m, Ar*H*), 4.67 (1H, q, *J* = 6.5 Hz, *H*⁶), 3.33 (1H, m, *H*²), 3.20 (2H, br, N*H*), 2.84 (1H, dd, *J* = 13.0 Hz, *J* = 5.0 Hz, *H*¹), 2.70 (1H, dd, *J* = 13.0 Hz, *J* = 4.3 Hz, *H*^{1'}), 1.87 (1H, m, *H*³), 1.57 (3H, d, *J* = 6.6 Hz, CH₃⁷), 0.93 (3H, d, *J* = 6.8 Hz,

 CH_3^{4}), 0.84 (3H, d, J = 6.8 Hz, CH_3^{5}). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 139.7 (*C*), 134.2 (*C*), 131.2 (*C*), 129.3 (*C*H), 128.1(*C*H), 126.4 (*C*H), 125.9 (*C*H), 125.8 (*C*H), 122.9 (*C*H), 122.6 (*C*⁴H), 119.9 (*C*⁸, q, J = 321 Hz), 60.9 (*C*²H), 53.8 (*C*⁶H), 47.8 (*C*³H₂), 30.5 (*C*³H), 23.1 (*C*⁷H₃), 19.2 (*C*⁴H₃), 18.8 (*C*⁵H₃). ¹⁹F NMR (282 MHz; CDCl₃; T = 300 k) δ -77.4 (s). Elemental Analysis: Found: C, 55.7; H, 6.2; N, 7.0% Calc. for C₁₈H₂₃F₃N₂O₂S: C, 55.7; H, 6.0; N, 7.2%. MS (EI): m/z 388 (M⁺), 373 (M⁺-CH₃), 255 (M⁺-Tf), 184 (M⁺-204).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.01 (1H, d, *J* = 9.4 Hz, *H*ⁱ), 7.85 (1H, d, *J* = 9.4 Hz, Ar*H*), 7.80 (1H, d, *J* = 7.8 Hz, Ar*H*), 7.54-7.48 (3H, m, Ar*H*), 7.46 (1H, pst, *J* = 7.4 Hz, Ar*H*), 4.88 (1H, q, *J* = 6.5 Hz, *H*⁶), 4.68 (2H, br, N*H*), 3.56 (2H, m, *H*²), 2.75 (2H, dd, *J* = 13.5 Hz, *J* = 4.9 Hz, *H*¹), 2.63 (2H, dd, *J* = 13.5 Hz, *J* = 9.7 Hz, *H*¹), 1.70 (2H, m, *H*³), 1.57 (3H, d, *J* = 6.7 Hz, *CH*₃⁷) 0.88 (6H, d, *J* = 6.9 Hz, *CH*₃⁴), 0.31 (6H, d, *J* = 6.8 Hz, *CH*₃⁵). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 137.4 (*C*), 134.3 (*C*), 132.1 (*C*), 129.1 (*C*H), 128.7(*C*H), 125.9 (*C*H), 125.8 (*C*H), 125.3 (*C*H), 125.1 (*C*H), 123.5 (*C*ⁱH), 119.6 (*C*⁸, q, *J* = 321 Hz), 59.2 (*C*²H), 53.9 (*C*⁶H), 53.2(*C*¹H₂), 27.7 (*C*³H), 19.5 (*C*⁴H₃), 14.6 (*C*⁵H₃), 12.4 (*C*⁷H₃). ¹⁹F NMR (282 MHz; CDCl₃; T = 300 k) δ - 77.56 (s). Elemental Analysis: Found: C, 47.4; H, 5.8; N, 6.6% Calc. for C₂₄H₃₃F₆N₃O₄S₂: C, 47.6; H, 5.5; N, 6.9%. MS (EI): m/z 590 (M⁺-CH₃), 401 (M⁺-Tf).

Synthesis of 4b

A solution of amine **3b** (0.842 g, 1.53 mmol), 2,6-bis(chloromethyl) pyridine (0.269 g, 1.53 mmol) and micronized anhydrous potassium carbonate (0.633 g, 4.58 mmol) in distilled acetonitrile (35 mL) was stirred and heated under reflux for 45 hours. The resulting mixture was washed with water end extracted with ethyl acetate, dried and purified by silica gel chromatography using toluene:dichloromethane:isopropanol = 90:10:5 as eluant, obtaining a white solid **4b** (0.508 g, 0.776 mmol, yield: 51%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.11 (1H, d, *J* = 8.1 Hz, *H*ⁱ), 7.90-7.83 (2H, m, Ar*H*), 7.76 (1H, pst, *J* = 7.8 Hz, *H*^r), 7.50 (4H, d, *J* = 8.2 Hz, *H*ⁿ), overlapping with 7.52-7.23 (6H, m, Ar*H*), 7.19 (4 H, d, *J* = 8.2 Hz, *H*^o), 4.31 (4H, br, CH_2^{2}), 3.93 (2H, br, CH_2^{13}), 3.07 (4H, m, CH_2^{4}), 2.39 (6H, s, CH_3^{14}) overlapping with 2.36 (4H, m, CH_2^{5}). Elemental Analysis: Found: C, 66.2; H, 5.8; N, 8.4% Calc. for C₃₆H₃₈N₄O₄S₂: C, 66.0; H, 5.8; N, 8.6%.

Synthesis of 4e-(4S,8S)

A solution of amine **3e-(2***S***,2***S'***)** (0.330 g, 0.520 mmol), 2,6-bis(chloromethyl) pyridine (0.0914 g, 0.520 mmol) and micronized anhydrous potassium carbonate (0.228 g, 1.65 mmol) in distilled acetonitrile (12 mL) was stirred and heated under reflux for 45 hours. The resulting mixture was washed with water end extracted with ethyl acetate, dried and purified by silica gel chromatography

using toluene:dichloromethane:isopropanol = 90:10:5 as eluant, obtaining a white solid **4e-(4***S***,8***S***)** (0.215 g, 0.291 mmol, yield: 56%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.35 (1H, d, J = 8.0 Hz, H^{i}), 7.86 (1H, d, J = 8.0 Hz, Ar*H*), 7.76 (1H, d, J = 8.0 Hz, Ar*H*), 7.66-7.58 (3H, m, Ar*H*), 7.53 (1H, pt, J = 7.6 Hz, Ar*H*), 7.43 (1H, pt, J = 7.6 Hz, Ar*H*), 7.29-7.11 (6H, m, Ar*H*), 7.02 (4H, d, J = 7.8 Hz, H^{0}), 4.72 (2H, d, J = 15.6 Hz, H^{2}), 4.30 (1H, d, J = 13.5 Hz, H^{13}), 4.18 (1H, d, J = 13.5 Hz, $H^{13'}$), 3.78 (2H, d, J = 15.6 Hz, $H^{2'}$), 3.68 (2H, dd, J = 15.6 Hz, J = 6.9 Hz, H^{5}), 3.51 (2H, m, H^{4}), 2.29 (6H, s, CH_{3}^{17}), 2.19 (2H, m, $H^{5'}$), 1.19 (2H, m, H), 0.58 (6H, d, J = 6.9 Hz, CH_{3}^{15}), 0.48 (6H, br, CH_{3}^{16}). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 156.5 (C), 142.3 (C), 139.3 (C), 137.2 (CH), 135.7 (C), 134.0 (C), 132.7 (C), 128.9 (CH), 128.5 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 125.9 (CH), 125.7 (CH), 125.4 (CH), 125.0 (CH), 120.2 (CH), 65.6 (C^{4} H), 57.2 (C^{13} H₂), 53.1 (C^{5} H₂), 48.9 (C^{2} H₂), 30.5 (C^{14} H), 21.4 (C^{17} H₃), 20.4 (C^{15} H₃), 20.2 (C^{16} H₃). Elemental Analysis: Found: C, 68.4; H, 6.8; N, 7.4% Cale. for C₄₂H₅₀N₄O₄S₂: C, 68.3; H, 6.8; N, 7.6%. MS (FAB): m/z 739 (M⁺+1). [α]_D²⁰ = + 1.04 (*c* 1.01 in CHCl₃).

Synthesis of 4f-(13R,4S,8S)

A solution of amine **3f-(1***R***,2***S***,2'***S***) (0.715 g, 1.10 mmol), 2,6-bis(chloromethyl) pyridine (0.194 g, 1.10 mmol) and micronized anhydrous potassium carbonate (0.608 g, 4.40 mmol) in distilled acetonitrile (37 mL) was stirred and heated under reflux for 116 h. The resulting mixture was washed with water end extracted with ethyl acetate, dried and purified by silica gel chromatography using** *n***-hexane:ethyl acetate = 6:4 as eluant, obtaining a white solid 4f-(13***R***,4***S***,8***S***) (0.471 g, 0.626 mmol, yield: 57%).**

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.58 (1H, d, J = 8.1 Hz, H^{i}), 7.89 (1H, m, Ar*H*), 7.83 (1H, d, J = 8.1 Hz, Ar*H*), 7.69 (1H, d, J = 8.1 Hz, Ar*H*), 7.64-7.42 (8H, m, Ar*H*), 7.12 (4H, d, J = 7.8 Hz, H^{o}), 7.05 (2H, m, Ar*H*), 5.18 (1H, m, H^{13}), 4.72 (2H, m, H^{2}), 3.94-3.82 (6H, m, *H*), 2.63-2.60 (2H, m, *H*), 2.40 (2H, m, *H*) overlapping with 2.33 (6H, s, CH_{3}^{18}), 1.57 (3H, d, J = 6.5 Hz, CH_{3}^{14}), 0.44 (12H, m, CH_{3}^{16-17}). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 156.5 (*C*), 142.5 (*C*), 142.2 (*C*), 138.9 (*C*), 137.0 (*C*H), 134.2 (*C*), 131.7 (*C*), 129.2 (C^{o} H), 128.9 (*C*H), 127.8 (C^{a} H), 127.0 (*C*H), 126.0 (*C*H), 125.9 (*C*H), 125.8 (*C*H), 125.2 (*C*H), 124.0 (C^{i} H), 120.7 (*C*H), 66.5 (*C*H), 50.8 (CH_{2}), 49.5 (CH_{2}), 30.0 (*C*H), 23.8 (C^{14} H₃), 21.5 (C^{18} H₃), 21.1 (C^{16} H₃). A signal relative to a CH was not detected. ¹⁵N NMR (40 MHz; CDCl₃; T = 300 k) δ 33.2 (N^{6}). The signals relative to N^{-15} and N^{12} were not detected. ¹H NMR (300 MHz; C₆D₅CD₃; T = 300 k) δ 8.74 (1H, d, J = 8.8 Hz, H^{i}), 7.99 (1H, d, J = 7.2 Hz, H^{b}), 7.68 (4H, pst, J = 8.0 Hz, H^{o}) overlapping with 7.69-7.66 (1H, m, H^{e}), 7.57-7.47 (2H, m, H^{d} and H^{b}), 7.38 (1H, pst, J = 7.5 Hz, H^{c}), 7.29 (1H, pst, J = 7.5 Hz, H^{c}), 7.29 (1H, m, H^{c} , 6.86 (4H, d, J = 8.0 Hz, H^{o}), 6.68 (2H, d, J = 7.8 Hz, H^{d}), 5.39 (1H, q, J = 6.6 Hz, H^{13}), 4.62 (2H, d, J = 15.9 Hz, H^{2}), 4.14-4.06 (4H, m, H^{4} and H^{5}), 4.02-3.93 (2H, m, H^{2}),

2.96 (2H, d, J = 15.0 Hz, $H^{5'}$), 2.02 (6H, s, CH_3^{18}), 1.68 (3H, d, J = 6.6 Hz, CH_3^{14}), 1.39 (2H, m, H^{15}), 0.58 (12H, m, CH_3^{16-17}). ¹³C NMR (75 MHz; C₆D₅CD₃; T = 300 k) δ 157.4 (C), 142.7 (C), 141.9 (C), 140.4 (C), 136.3 (C^rH), 134.9 (C), 132.5 (C), 129.0 (C^oH), 128.2 (CⁿH), 127.2 (C^dH), 126.3 (C^bH), 125.9 (C^dH) overlapping with 125.9 (C^hH), 125.2 (C^fH), 124.5 (CⁱH), 120.5 (C^qH), 66.4 (C⁴H), 57.2 (C¹³H), 51.4 (C²⁻⁵H₂), 30.9 (C¹⁵H), 23.5 (C¹⁴H₃), 21.0 (C¹⁶H₃), 20.8 (C¹⁸H₃). A signal relative to an aromatic carbon was not detected. Elemental Analysis: Found: C, 68.4; H, 7.4; N, 7.1% Calc. for C₄₃H₅₂N₄O₄S₂: C, 68.6; H, 7.0; N, 7.4%. MS (FAB): m/z 753 (M⁺+1).

Synthesis of 4g-(13*S*,4*S*,8*S*)

A solution of amine 3g-(1S,2S,2'S) (0.0888 g, 0.137 mmol), 2,6-bis(chloromethyl) pyridine (0.0240 g, 0.136 mmol) and micronized anhydrous potassium carbonate (0.0700 g, 3.70 mmol) in distilled acetonitrile (6 mL) was stirred and heated under reflux for 53 h. The resulting mixture was washed with water end extracted with ethyl acetate, dried and purified by silica gel chromatography using n-hexane:dichloromethane:isopropanol = 80:17.5:2.5 as eluant, obtaining a white solid 4g-(13S,4S,8S) (0.0512 g, 0.0679 mmol, yield: 50%).

¹H NMR (300 MHz; CDCl₃;T = 300 k) δ 8.54 (1H, m, *H*ⁱ), 7.89 (1H, m, Ar*H*), 7.85 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.77 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.64-7.41 (8H, m, Ar*H*), 7.09-6.99 (6H, m, Ar*H*), 5.01

(1H, m, H^{13}), 4.76 (2H, m, H^2), 3.86 (2H, m, H^2), 3.77 (2H, m, H^4), 3.55 (2H, m, H^5), 2.36 (2H, m, $H^{5^{\circ}}$), 2.29 (6H, s, CH_3^{18}), 1.48 (3H, d, J = 6.6 Hz, CH_3^{14}), 1.34-1.23 (2H, m, H^{15}), 0.60 (6H, m, CH_3^{16}), 0.38 (6H, m, CH_3^{17}). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 156.3 (*C*), 142.3 (*C*), 141.4 (*C*), 139.2 (*C*), 137.3 (*C*H), 134.1 (*C*), 132.5 (*C*), 128.9 (*C*ⁿH), 128.8 (*C*H), 127.7 (*C*^oH), 127.6 (*C*H), 126.7 (*C*H), 126.2 (*C*H), 125.4 (*C*H), 124.1 (*C*H), 120.7 (*C*H), 66.0 (*C*⁴H), 56.0 (*C*¹³H), 51.0 (*C*⁵H₂), 49.3 (*C*²H₂), 30.2 (*C*¹⁵H), 21.4 (*C*¹⁸H₃), 20.8 (*C*¹⁴H₃), 20.1 (*C*¹⁶H₃) overlapping with 20.1 (*C*¹⁷H₃). Elemental Analysis: Found: C, 68.6; H, 7.2; N, 7.4% Calc. for C₄₃H₅₂N₄O₄S₂: C, 68.6; H, 7.0; N, 7.4%. MS (FAB): m/z 753 (M⁺+1).

Synthesis of 4h-(4S,8S)

A solution of amine **3h**-(**2***S*,**2**'*S*) (0.350 g, 0.592 mmol), 2,6-bis(chloromethyl) pyridine (0.108 g, 0.612 mmol) and micronized anhydrous potassium carbonate (0.245 g, 1.75 mmol) in distilled acetonitrile (15 mL) was stirred and heated under reflux for 28 h. The mixture was dried and purified by silica gel chromatography using toluene:dichloromethane:isopropanol = 85:10:5 as eluant, obtaining a yellow oil **4h**-(**4***S*,**8***S*) (0.218 g, 0.314 mmol, yield: 53%).

¹H NMR (400 MHz; C₆D₆; T = 300 k) δ 7.78-7.76 (2H, m, Ar*H*), 7.72-7.66 (2H, m, Ar*H*), 7.45-7.37 (2H, m, Ar*H*), 7.27-7.22 (1H, m, Ar*H*),7.17-7.07 (3H, m, Ar*H*), 4.77-4.47 (4H, m, C*H*), 3.893.85 (4H, m, *H*), 3.10-3.05 (2H, m, *H*), 1.09 (2H, m, H^{14}), 0.69 (6H, bs, CH_3^{15}), 0.40 (6H, bs, CH_3^{16}). Two *CH* signals were not detected. At room temperature, this compound gives very broad signals in CDCl₃. ¹³C NMR (100 MHz; C₆D₆; T = 300 k) δ 136.9 (*C*H), 129.1 (*C*H), 128.4 (*C*H), 128.3 (*C*H), 126.2 (*C*H), 126.0 (*C*H), 125.4 (*C*H), 56.9 (C^2 H), 53.2 (C^{13} H₂), 49.9 (*C*H₂), 29.4 (C^{14} H), 19.9 (C^{15} H₃), 19.6 (C^{16} H₃). Signals relative to quaternary carbons and aromatic *C*H were not detected. ¹⁹F NMR (376 MHz; C₆D₆; T = 300 k) δ - 74.5 (bs). Elemental Analysis: Found: C, 51.8; H, 5.4; N, 8.0% Calc. for C₃₀H₃₆F₆N₄O₄S₂: C, 51.9; H, 5.2; N, 8.1%. MS (FAB): m/z 695 (M^+ +1), 561 (M^+ -Tf). [α]_D²⁰ = - 0.85 (*c* 0.860 in CHCl₃).

Synthesis of 4i-(13R,4S,8S) under conventional heating

A solution of amine **3i**-(1R, 2S, 2'S) (0.402 g, 0.665 mmol), 2,6-bis(chloromethyl) pyridine (0.118 g, 0.671 mmol) and micronized anhydrous potassium carbonate (0.290 g, 2.10 mmol) in distilled acetonitrile (20 mL) was stirred and heated under reflux for 110 hours. The resulting mixture was washed with water end extracted with ethyl acetate, dried and purified by silica gel chromatography using toluene:dichloromethane:isopropanol = 85:10:5 as eluant, obtaining a white solid **4i**-(13R, 4S, 8S) (0.192 g, 0.271 mmol, yield: 39%).

Synthesis of 4i-(13R,4S,8S) under microwave heating

This synthesis can be performed in the air. A solution of amine **3i-(13***R***,4***S***,8***S***) (0.387 g, 0.639 mmol), 2,6-bis(chloromethyl) pyridine (0.116 g, 0.658 mmol) and micronized potassium carbonate (0.265 g, 1.92 mmol) in distilled acetonitrile (13 mL) was added in a microwave tube. The mixture was stirred and heated by microwave irradiation for 4 hours and 30 minutes at 150°C. The resulting mixture was washed with water end extracted with ethyl acetate, dried and purified by silica gel chromatography using toluene:dichloromethane:isopropanol = 85:10:5 as eluant, obtaining a white solid 4i-(13***R***,4***S***,8***S***) (0.250 g, 37.8 mmol, yield: 59%).**

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.42 (1H, m, *H*ⁱ), 7.81-7.78 (2H, m, Ar*H*), 7.68-7.62 (2H, m, Ar*H*), 7.52-7.40 (3H, m, Ar*H*), 7.20-7.17 (2H, m, Ar*H*), 5.16 (1H, q, *J* = 6.3 Hz, *H*¹³), 4.91 (2H, d, *J* = 16.0 Hz, *H*²), 4.40 (2H, d, *J* = 16.0 Hz, *H*²), 3.82 (2H, m, *H*⁵), 2.98 (2H, m, *H*⁵), 1.65 (2H, m, *H*⁴), 1.51 (3H, d, *J* = 6.3 Hz, *CH*₃¹⁴), 0.73 (6H, bs, *CH*₃¹⁶), 0.44 (6H, bs, *CH*₃¹⁷). Two CH signals were not detected. ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 155.1 (*C*), 141.2 (*C*), 137.9 (*CH*), 134.2 (*C*), 131.6 (*C*), 128.9 (*C*H), 127.2 (*C*H), 126.4 (*C*H), 126.0 (*C*H), 125.3 (*C*H), 123.6 (*C*H), 122.1 (*C*H), 69.1 (*C*⁴H), 57.4 (*C*¹³H), 50.9 (*C*²H₂), 50.4 (*C*⁵H₂),29.9 (*C*¹⁵H), 24.0 (*C*¹⁴H₃), 21.0 (*C*¹⁶H₃), 19.3 (*C*¹⁷H₃). ¹⁵N NMR (40 MHz; CDCl₃; T = 300 k) δ 31.35 (*N*⁶), The signal relative to *N*-Tf and *N*¹² were not detected. ¹⁹F NMR (282 MHz; CDCl₃; T = 300 k) δ - 74.15 (s). Elemental Analysis: Found: C, 52.4; H, 5.3; N, 8.0% Calc. for C₃₁H₃₈F₆N₄O₄S₂: C, 52.5; H, 5.4; N, 7.9%. MS (FAB): m/z 709 (M⁺+1), 575 (M⁺-133). [α]_D²⁰ = + 117 (*c* 0.005 in CH₂Cl₂).

Synthesis of 5c-(13S)

Ligand **4c-(13***S***)** (0.200 g, 0.323 mmol) was dissolved in distilled dichloroethane (5 mL). Triflic acid (0.0530 g, 0.355 mmol) was added and the solution stirred for 2 hours. The solution was dried, then *n*-hexane (10 mL) was added and the solid filtered in air (0.055 g, 0.0710 mmol, yield: 22%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 11.38 (1H, s, N*H*), 7.80 (2H, d, *J* = 8.2 Hz, Ar*H*), 7.71 (1H, pt, *J* = 7.7 Hz, Ar*H*), 7.61 (2H, d, *J* = 8.2 Hz, Ar*H*), 7.52 (2H, m, Ar*H*), 7.45-7.39 (5H, m, Ar*H*), 7.34 (2H, d, *J* = 8.1 Hz, Ar*H*), 7.22 (1H, d, *J* = 7.7 Hz, Ar*H*), 7.04 (1H, d *J* = 7.7 Hz, Ar*H*), 5.60 (1H, q, *J* = 7.0 Hz, *H*¹³), 4.65 (1H, d, *J* = 17.1 Hz, C*H*₂), 4.17 (1H, d, *J* = 17.1 Hz, C*H*₂), 4.16-4.09 (2H, m, C*H*₂), 3.88 (1H, m, C*H*₂), 3.74-3.64 (3H, m, C*H*₂), 3.50-3.39 (3H, m, C*H*₂), 2.50 (3H, s, C*H*₃), 2.45 (3H, s, C*H*₃) overlapping with 2.45-2.40 (1H, m, C*H*₂), 1.85 (3H, d, *J* = 7.0 Hz, CH_3^{14}) overlapping with 1.85-1.80 (1H, m, C*H*₂). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 156.8 (C), 155.5 (C), 145.4 (C), 144.8 (C), 139.6 (CH), 134.4 (C), 133.4 (C), 132.7 (C), 130.7 (CH), 130.6 (CH), 130.4 (CH), 129.9 (CH), 129.5 (CH), 127.9 (CH), 127.6 (CH), 122.8 (CH), 122.2 (CH), 58.3 (C^{13} H), 52.8 (CH_2), 51.7 (CH_2), 51.5 (CH_2), 46.2 (CH_2), 44.4 (CH_2), 21.8 (CH_3 Ts), 21.7 (CH_3 Ts). One CH₂ and C^{14} H₃ signals were not detected. ¹⁵N NMR (40 MHz; CDCl₃; T = 300 k) δ 282,0 (N^{12}), 52.2 (N^6). The signals relative to *N*-Ts were not detected. Elemental Analysis: Found:

C, 52.9; H, 5.1; N, 7.6% Calc. for $C_{34}H_{39}F_3N_4O_7S_3$: C, 53.1; H, 5.1; N, 7.3%. m/z 619.2 (M⁺ - CF₃SO₃⁻).

5c-(13R) was synthesized in the same way starting from 4c-(13R).

Synthesis of 5d-(13S)

Ligand **4d-(13***S***)** (0.200 g, 0.299 mmol) was dissolved in distilled dichloroethane (5 mL). Triflic acid (0.046 g, 0.329 mmol) was added and the solution stirred for 2 hours. The solution was dried, then *n*-hexane (10 mL) was added and the solid filtered in air (0.118 g, 0.144 mmol, yield: 48%).

¹H NMR (400 MHz; CDCl₃; T = 300 k) δ 10.68 (1H, s, NH), 8.20 (1H, d, *J* = 8.6 Hz, Ar*H*), 7.94 (1H, d, *J* = 8.2 Hz, Ar*H*), 7.87-7.81 (4H, m, Ar*H*), 7.72 (1H, pt, *J* = 7.7 Hz, Ar*H*), 7.58 (1H, pt, *J* = 7.7 Hz, Ar*H*), 7.45 (2H, d, *J* = 8.1 Hz, Ar*H*), 7.41 (2H, d, *J* = 8.1 Hz, Ar*H*), 7.36-7.30 (2H, m, Ar*H*), 7.21 (2H, d, *J* = 8.1 Hz, Ar*H*), 6.81-6.77 (2H, m, Ar*H*), 6.22 (1H, q, *J* = 6.6 Hz, H^{13}), 4.53 (1H, m, C*H*₂) overlapping with 4.48 (1H, d, *J* = 16.6 Hz, C*H*₂), 4.07 (1H, d, *J* = 16.6 Hz, C*H*₂), 4.00-3.86 (3H, m, C*H*₂), 3.70 (1H, d, *J* = 16.3 Hz, C*H*₂), 3.52-3.30 (3H, m, C*H*₂), 2.49 (3H, s, C*H*₃), 2.35 (3H, s, C*H*₃), 2.20 (1H, m, C*H*₂), 2.06 (3H, d, *J* = 6.6 Hz, C*H*₃¹⁴), 1.73 (1H, m, C*H*₂). ¹³C NMR

(100 MHz; CDCl₃; T = 300 k) δ 157.4 (*C*), 156.9 (*C*), 145.5 (*C*), 144.7 (*C*), 140.0 (*C*H), 133.9 (*C*), 133.8 (*C*), 132.5 (*C*), 131.5 (*C*H), 130.7 (*C*H), 130.7 (*C*), 130.1 (*C*H), 129.4 (*C*H), 129.3 (*C*), 128.0 (*C*H), 127.9 (*C*H), 127.5 (*C*H), 126.9 (*C*H), 126.8 (*C*H), 126.1 (*C*H), 122.8 (*C*H), 122.7 (*C*H), 121.9 (*C*H), 55.2 (*C*¹³H), 54.3 (*C*H₂), 53.8 (*C*H₂), 53.5 (*C*H₂), 52.9 (*C*H₂), 47.8 (*C*H₂), 47.2 (*C*H₂), 21.8 (*C*H₃Ts), 21.6 (*C*H₃Ts), 11.3 (*C*¹⁴H₃). ¹⁵N NMR (40 MHz; CDCl₃; T = 300 k) δ 282,1 (*N*¹²), 52.0 (*N*⁶). The signals relative to *N*-Ts were not detected. Elemental Analysis: Found: C, 55.4; H, 5.2; N, 6.4% Calc. for C₃₈H₄₁F₃N₄O₇S₃: C, 55.7; H, 5.0; N, 6.8%. MS (FAB): m/z 669.2 (M⁺-CF₃SO₃⁻). [α]_D²⁰ = - 168 (*c* 0.5 in CH₂Cl₂).

5d-(13*R***)** was synthesized in the same way starting from **4d-(13***R***)**. $[\alpha]_D^{20} = +168$ (*c* 0.5 in CH₂Cl₂)

Synthesis of 6b

Copper (I) triflate benzene complex (0.0298 g, 0.0591 mmol) was added to a solution of macrocycle **4b** (0.0891 g, 0.118 mmol) in dichloroethane (10 mL). The solution was stirred at room temperature for one hour, concentrated to 5 mL and then 10 mL of *n*-hexane were layered. Then the solid was filtered and dried *in vacuo* under nitrogen, obtaining complex **6b** as a solid (0.111 g, 0.115 mmol, yield: 97%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.97 (1H, d, J = 7.8 Hz, Hⁱ), 8.08-8.05 (2H, m, Ar*H*), 7.92 (1H, m, Ar*H*), 7.85-7.75 (2H, m, Hⁱ) 7.65-7.52 (7H, m, Ar*H*), 7.42-7.37 (4H, m, Ar*H*), 7.27-7.17 (2H, m, Ar*H*), 4.89 (2H, d, J = 14.7 Hz, H² and H¹⁰), 4.46 (2H, m, CH₂¹³), 3.68 (2H, d, J = 14.7 Hz, H² and H¹⁰), 3.53 (2H, m, H⁴ and H⁸), 2.93 (2H, m, H⁴ and H⁸), 2.82 (2H, m, H⁵ and H⁷), 2.50 (6H, s, CH₃¹⁴), overlapping with 2.58-2.50 (2H, m, H⁵ and H⁷). Elemental Analysis: Found: C, 51.4; H, 4.3; N, 6.1% Calc. for C₃₇H₃₈CuF₃N₄O₇S₃: C, 51.2; H, 4.4; N, 6.6%.

Synthesis of 6f

Copper (I) triflate benzene complex (0.0298 g, 0.0591 mmol) was added to a solution of macrocycle **4f-(13***R***,4***S***,8***S***) (0.0891 g, 0.118 mmol) in dichloroethane (10 mL). The solution was stirred at room temperature for one hour, concentrated to 5 mL and then 10 mL of** *n***-hexane were layered. Then the solid was filtered and dried** *in vacuo* **under nitrogen, obtaining complex 6f** as a solid (0.111 g, 0.115 mmol, yield: 97%).

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.68 (1H, d, J = 8.7 Hz, Hⁱ), 7.93 (1H, d, J = 8.0 Hz, ArH), 7.87 (4H, d, J = 8.1 Hz, H^{n} and $H^{n'}$), 7.80-7.69 (3H, m, ArH), 7.62-7.40 (7H, m, ArH), 7.23-7.16 (2H, m, ArH), 5.95 (1H, q, J = 6.6 Hz, H^{14}), 5.25 (1H, d, J = 20 Hz, H^2), 4.79 (1H, d, J = 12.7Hz, H^7), 4.71 (1H, d, J = 14.6 Hz, H^{10}), 4.62 (1H, d, J = 20 Hz, $H^{2'}$), overlapping with 4.61 (1H, m, H^{8}), 4.01 (1H, d, J = 14.6 Hz, $H^{10'}$), 2.78 (1H, d, J = 12.7 Hz, $H^{7'}$), 2.57 (3H, s, $CH_{3}^{18 \text{ or } 18'}$), overlapping with 2.57 (1H, m, H⁴), 2.52 (3H, s, CH₃^{18' or 18}), 2.42-2.37 (1H, m, H⁵), 2.30-2.15 (2H, m, $H^{5'}$ and $H^{15'}$), 2.10 (3H, d, J = 6.8 Hz, CH_3^{14}), 1.59 (1H, m, H^{15}), 0.90 (3H, d, J = 6.7 Hz, $CH_3^{16'}$), 0.68 (3H, d, J = 6.2 Hz, CH_3^{17}), 0.29 (3H, d, J = 6.5 Hz, $CH_3^{17'}$), -0.49 (3H, d, J = 6.2 Hz, CH_3^{16}). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 155.7 ($C^{1 \text{ or } 11}$), 151.2 ($C^{11 \text{ or } 1}$), 145.6 ($C^{p'}$), 145.3 (C^p), 140.4 (CH), 134.8 (C^a), 134.5 (C^l), 133.9 (C), 132.1 (C), 131.5 (CH), 130.4 (C^o), 129.8 (CH), 129.3 (CH), 128.9 (CH), 127.7 (CH^h), 127.3 (CH), 126.4 (CH), 125.2 (CH), 124.8 (CH), 124.5 (CH), 123.9 (CH), 122.8 (Cⁱ), 64.7 (C⁴H), 62.0 (C⁸H), 57.4 (C⁵H₂), 57.1 (C¹⁰H₂), 56.4 (C¹³H), 55.5 $(C^{7}H_{2})$, 46.8 $(C^{2}H_{2})$, 29.9 $(C^{15'}H)$, 27.1 $(C^{15}H)$, 24.5 $(C^{14}H_{3})$, 22.4 $(C^{16'}H_{3})$, 21.9 $(C^{18 \text{ and } 18'}H_{3})$, 21.3 $(C^{17'}H_3)$, 20.3 $(C^{17}H_3)$, 18.5 $(C^{16}H_3)$, ¹⁹F NMR (282 MHz; CDCl₃; T = 300 k) δ - 78.58 (s). Elemental Analysis: Found: C, 54.7; H, 5.2; N, 5.7% Calc. for C₄₄H₅₂CuF₃N₄O₇S₃: C, 54.7; H, 5.4; N, 5.8%.

Synthesis of 6i

Copper (I) triflate benzene complex (0.231 g, 0.171 mmol) was added to a solution of macrocycle **4f-(13***R***,4***S***,8***S***) (0.0860 g, 0.325 mmol) in dichloroethane (7 mL). The solution was stirred at room temperature for one hour and then 50 mL of** *n***-hexane were layered. Then the solid was filtered and dried** *in vacuo* **under nitrogen, obtaining complex 6i** as a solid (0.140 g, 0.152 mmol, yield: 45%).

¹H NMR (300 MHz; CDCl₃; Me₄Si; T = 300 k) δ 8.16 (1H, d, J = 8.9 Hz, H^{i}), 8.01 (2H, pst, J = 7.5 Hz, ArH), 7.80 (1H, pst, J = 7.7 Hz, ArH), 7.73 (1H, m, ArH), 7.68-7.63 (3H, m, ArH), 7.31 (1H, m, ArH), 7.20 (1H, m, ArH), 6.46 (1H, m, H^{13}), 5.10-4.70 (5H, m, H), 4.40-4.01 (3H, m, H), 3.50 (1H, m, H), 2.95 (1H, m, H), 2.50-2.36 (1H, m, H), 2.06 (3H, d, J = 6.8 Hz, CH_3^{14}), 1.52 (1H, m, H), 1.27 (3H, bs, $CH_{3i-prop}$), 1.10 (3H, bs, $CH_{3i-prop}$), 0.80 (3H, bs, $CH_{3i-prop}$), 0.47 (3H, bs, $CH_{3i-prop}$). ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 139.3 (CH), 131.7 (CH), 130.4 (CH), 128.5 (CH), 127.4 (CH), 125.7 (CH), 122.6 (CH), 121.3 (C^{i} H), 57.1 (CH_2), 43.6 (CH_2), 31.7 (CH_2), 28.8 (CH), 22.8 (CH_2), 21.3 (C^{14} H₃), 20.8 (CH_3 i-prop), 14.3 (CH_3 i-prop). Signals relative to quaternary carbons, aromatic CH, aliphatic CH and CH₃ were not detected. Elemental Analysis: Found: C, 41.8; H, 3.7; N, 5.8% Calc. for C₃₂H₃₈CuF₉N₄O₇S₃: C, 41.7; H, 4.2; N, 6.1%.

Synthesis of 7d

20 mg of copper(I) complex **6d** were added to anhydrous and degassed CDCl₃ in a NMR tube and the solution was saturated with 13 CO, obtaining **7d**.

¹H NMR (300 MHz; CDCl₃; T = 300 k) δ 8.77 (1H, d, *J* = 8.7 Hz, *H*ⁱ), 7.96 (1H, d, *J* = 8.3 Hz, Ar*H*), 7.88 (2H, d, *J* = 8.5 Hz, *H*^{n or n'}), 7.84-7.82 (1H, m, Ar*H*) overlapping with 7.81 (2H, d, *J* = 8.2 Hz, *H*^{n' or n}), 7.73 (1H, m, *H*^h), 7.68-7.59 (2H, m, Ar*H*), 7.53 (2H, d, *J* = 8.5 Hz, *H*^{o or o'}), 7.49 (1H, m, Ar*H*), 7.40 (2H, d, *J* = 8.2 Hz, *H*^{o' or o}), 7.31 (1H, m, Ar*H*), 7.23-7.16 (2H, m, Ar*H*), 6.19 (1H, q, *J* = 6.8 Hz, *H*¹³), 5.24 (1H, d, *J* = 17.7 Hz, *H*^{10 or 2}), overlapping with 5.19 (1H, d, *J* = 15.0 Hz, *H*^{2 or 10}), 4.80 (1H, m, *H*⁷), 4.30 (1H, m, *H*⁷), 3.98 (1H, d, *J* = 17.7 Hz, *H*^{10 or 2}), 3.64 (1H, d, *J* = 15.0 Hz, *H*^{2 or 10}), 3.09-2.64 (4H, m, CH), 2.56 (3H, s, CH₃^{15 or 15'}), 2.47 (3H, s, CH₃^{15' or 15}), 2.36-2.28 (1H, m, *H*^{7 or 5}), 2.16 (3H, *J* = 6.8 Hz, CH₃¹⁴) overlapping with 2.15-2.07 (1H, m, *H*^{8 or 4}). Highlighted signals are relative to compound **5d**. ¹³C NMR (75 MHz; CDCl₃; T = 300 k) δ 184.4 (free ¹³CO), 171.1 (¹³CO), 156.1 (C), 152.2 (C), 145.9 (C), 140.4 (CH), 135.2 (C), 134.6 (C), 132.2 (C), 130.7 (2 CH_{Ts}), 130.0 (CH), 129.2 (CH_{Ts}), 129.2 (CH), 128.0 (CH_{Ts}), 126.8 (C^hH), 126.1 (CH), 125.5 (2 CH), 124.2 (CH), 123.6 (CH), 122.7 (CⁱH), 56.8 (C²H₂), 56.4 (C²'H₂), 55.3 (C¹³H), 52.7 (C⁸H₂), 51.9 (C⁵H₂), 50.7 (C⁷H₂), 47.5 (C⁴H₂), 23.4 (C¹⁴H₃), 21.9 (C¹⁵H₃), 21.7 (C^{15'}H₃). ¹⁵N NMR

(40 MHz; CDCl₃; T = 300 k) δ 243.5 (N^{12}), 39.8 (N^{6}). The signals relative to *N*-Ts were not detected. IR (CH₂Cl₂ solution) $v_{CO} = 2111 \text{ cm}^{-1}$.

References

- K. M. Gillespie, C. J. Sanders, P. O'Shaughnessy, I. Westmoreland, C. P. Thickitt and P. Scott, J. Org. Chem., 2002, 67, 3450-3458.
- B. Castano, T. Pedrazzini, M. Sisti, E. Gallo, F. Ragaini, N. Casati and A. Caselli, *App. Organomet. Chem.*, 2011, 25, 824-829.
- A. Caselli, F. Cesana, E. Gallo, N. Casati, P. Macchi, M. Sisti, G. Celentano and S. Cenini, *Dalton Trans.*, 2008, 4202-4205.
- 4. A. Berkessel, P. Kaiser and J. Lex, *Chem. Eur. J.*, 2003, 9, 4746-4756.
- 5. C. J. Sanders, K. M. Gillespie and P. Scott, *Tetrahedron: Asymmetry* 2001, **12**, 1055-1061.
- 6. L. Huang, Y. Chen, G.-Y. Gao and X. P. Zhang, J. Org. Chem., 2003, 68, 8179-8184.
- 7. Y. Chen, G.-Y. Gao and X. P. Zhang, *Tetrahedron Lett.*, 2005, 46, 4965-4969.
- C. Böhm, M. Schinnerl, C. Bubert, M. Zabel, T. Labahn, E. Parisini and O. Reiser, *Eur. J.* Org. Chem., 2000, 2000, 2955-2965.
- A. G. M. Barrett, D. C. Braddock, I. Lenoir and H. Tone, J. Org. Chem., 2001, 66, 8260-8263.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

0.C

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Dalton Transactions This ournal is © The Royal Society of Chemistry 2012

Table S1 - Crystal Data and Details of the Structure Determination of 4f

Crystal Data

Formula		C43 H52 N4 O4 S2
Formula Weight		753.03
Crystal System		Orthorhombic
Space group		P212121 (No. 19)
a, b, c [Angstrom]	11.7359(2)	14.7577(2) 23.1185(3)
V [Ang**3]		4004.01(10)
Ζ		4
D(calc) [g/cm**3]		1.249
Mu(MoKa) [/mm]		0.180
F(000)		1608
Crystal Size [mm]		0.05 x 0.08 x 0.15
	Data Collection	

Temperature (K)								293
Radiation [Angstrom]				MoKa		().7	71073
Theta Min-Max [Deg]					1	L.6	,	26.7
Dataset	-14:	14	;	-18:	18	; -	-27	7: 28
Tot., Uniq. Data, R(int)		29	947	79,	776	52,	(0.051
Observed data [I > 0.0 sigma(I)]								5536

Refinement

Nref, Npar	7762, 478
R, wR2, S	0.0498, 0.1010, 1.04
w = 1/[\s^2^(Fo^2^)+(0.0395P)^2^+0.1421P]	where P=(Fo^2^+2Fc^2^)/3
Max. and Av. Shift/Error	0.00, 0.00
Flack x	0.01(6)
Min. and Max. Resd. Dens. [e/Ang^3]	-0.25, 0.14

Table	S2 - Bond	Distances	(Angs	trom) for	4f
S1	-011	1.432(2)	C16	-C33	1.517(5)
S1	-012	1.438(2)	C29	-C30	1.523(3)
S1	-N3	1.632(2)	C29	-C31	1.526(4)
S1	-C101	1.760(3)	C101	-C102	1.391(4)
S2	-021	1.436(2)	C101	-C106	1.375(4)
S2	-022	1.434(2)	C102	-C103	1.360(5)
S2	-N9	1.624(2)	C2	-H2B	0.9700
S2	-C201	1.771(3)	C2	-H2A	0.9700
N3	-C2	1.469(3)	C103	-C104	1.391(5)
N3	-C4	1.494(3)	C104	-C105	1.382(5)
NG	-C5	1.464(3)	C4	-H4	0.9800
NG	-C7	1.474(3)	C104	-C107	1.506(5)
NG	-C12	1.470(3)	C5	-H5A	0.9700
N9	-C8	1.500(3)	C105	-C106	1.379(4)
N9	-C10	1.474(3)	C5	-Н5В	0.9700
N12	-C1	1.324(4)	C7	-Н7В	0.9700
N12	-C11	1.337(4)	C7	-H7A	0.9700
C1	-C2	1.518(5)	C8	-Н8	0.9800
C1	-C403	1.389(5)	C10	-H10B	0.9700
C4	-C5	1.553(4)	C10	-H10A	0.9700
C4	-C16	1.556(4)	C12	-H12	0.9800
C7	-C8	1.537(4)	C13	-H13B	0.9600
C8	-C29	1.545(4)	C13	-H13C	0.9600
C10	-C11	1.501(4)	C13	-H13A	0.9600
C11	-C401	1.379(4)	C16	-H16	0.9800
C12	-C13	1.537(3)	C17	-H17A	0.9600
C12	-C301	1.527(4)	C17	-H17B	0.9600
C16	-C17	1.521(5)	C17	-H17C	0.9600
C29	-H29	0.9800	C301	-C310	1.434(4)
C30	-H30A	0.9600	C202	-H202	0.9300
C30	-Н30В	0.9600	C302	-C303	1.408(4)
C30	-H30C	0.9600	C303	-C304	1.348(5)
C31	-H31A	0.9600	C203	-н203	0.9300
C31	-H31B	0.9600	C304	-C305	1.403(4)
C31	-H31C	0.9600	C205	-H205	0.9300

C33	-H33C	0.9600	C305	-C310	1.423(4)
C33	-H33A	0.9600	C305	-C306	1.425(5)
C33	-H33B	0.9600	C306	-C307	1.351(6)
C201	-C202	1.384(5)	C206	-H206	0.9300
C201	-C206	1.372(5)	C207	-H20A	0.9600
C102	-H102	0.9300	C207	-H20B	0.9600
C202	-C203	1.373(5)	C207	-H20C	0.9600
C203	-C204	1.375(5)	C307	-C308	1.391(6)
C103	-H103	0.9300	C308	-C309	1.370(5)
C204	-C205	1.384(6)	C309	-C310	1.418(4)
C204	-C207	1.526(5)	C401	-C402	1.368(5)
C105	-H105	0.9300	C402	-C403	1.367(6)
C205	-C206	1.383(4)	C302	-H302	0.9300
C106	-H106	0.9300	C303	-H303	0.9300
C107	-H10C	0.9600	C304	-H304	0.9300
C107	-H10D	0.9600	C306	-Н306	0.9300
C107	-H10B	0.9600	C307	-H307	0.9300
C107	-H10F	0.9600	C308	-H308	0.9300
C107	-H10E	0.9600	C309	-НЗО9	0.9300
C107	-H10A	0.9600	C401	-H401	0.9300
C301	-C302	1.368(4)	C402	-H402	0.9300

Crystal Data							
Formula	C39 H44 N4 O4 S2						
Formula Weight	696.92						
Crystal System	Orthorhombic						
Space group	P212121 (No. 19)						
a, b, c [Angstrom]	9.7670(4) 14.2550(5) 25.9891(15)						
V [Ang**3]	3618.4(3)						
Ζ	4						
D(calc) [g/cm**3]	1.279						
Mu(MoKa) [/mm]	0.193						
F(000)	1480						
Crystal Size [mm]	0.08 x 0.08 x 0.17						
Data C	ollection						
Temperature (K)	293						
Radiation [Angstrom]	MoKa 0.71073						
Theta Min-Max [Deg]	2.9, 28.9						
Dataset	-11: 13 ; -19: 10 ; -34: 12						
Tot., Uniq. Data, R(int)	12636, 8019, 0.057						
Observed data [I > 0.0 sigma(I)] 3437						
Ref	inement						
Nref, Npar	8019, 442						
R, wR2, S	0.0727, 0.1075, 0.97						
w = 1/[\s^2^(Fo^2^)+(0.0089P)	^2^] where P=(Fo^2^+2Fc^2^)/3						
Max. and Av. Shift/Error	0.00, 0.00						
Flack x	-0.09(10)						
Min. and Max. Resd. Dens. [e/	Ang ³] -0.20, 0.19						

Table S3 - Crystal Data and Details of the Structure Determination for: 4d

Table S4 - Bond Distances (Angstrom) for 4d

S1	-01	1.435(3)	C2	-H2	0.9800
S1	-02	1.436(3)	C103	-C104	1.377(8)
S1	-N3	1.623(3)	C104	-C107	1.501(7)
S1	-C101	1.771(5)	C4	-H4B	0.9700
S2	-03	1.444(3)	C104	-C105	1.390(8)
S2	-04	1.455(4)	C4	-H4A	0.9700
S2	-N9	1.637(4)	C105	-C106	1.376(7)
S2	-C201	1.771(5)	C5	-H5A	0.9700
N3	-C2	1.485(6)	C5	-H5B	0.9700
N3	-C4	1.480(6)	C7	-H7A	0.9700
NG	-C5	1.471(6)	C7	-H7B	0.9700
N6	-C7	1.474(5)	C8	-H8B	0.9700
N6	-C311	1.492(6)	C8	-H8A	0.9700
N9	-C8	1.481(5)	C10	-H10	0.9800
N9	-C10	1.489(7)	C21	-H21B	0.9600
N12	-C1	1.335(6)	C21	-H21C	0.9600
N12	-C11	1.346(6)	C21	-H21A	0.9600
C1	-C2	1.532(6)	C22	-H22C	0.9600
C1	-C403	1.370(7)	C22	-H22A	0.9600
C2	-C21	1.516(7)	C22	-H22B	0.9600
C4	-C5	1.523(6)	C201	-C202	1.347(7)
C7	-C8	1.515(7)	C201	-C206	1.350(9)
C10	-C11	1.518(7)	C202	-C203	1.379(11)
C10	-C22	1.533(7)	C102	-H102	0.9300
C11	-C401	1.373(7)	C103	-H103	0.9300
C101	-C102	1.377(7)	C203	-C204	1.344(10)
C101	-C106	1.380(7)	C204	-C207	1.500(11)
C102	-C103	1.386(7)	C204	-C205	1.375(9)
C105	-H105	0.9300	C207	-H20C	0.9600
C205	-C206	1.378(11)	C307	-C308	1.399(11)
C106	-H106	0.9300	C308	-C309	1.376(11)
C107	-H10A	0.9600	C309	-C310	1.404(9)
C107	-H10C	0.9600	C311	-C312	1.530(7)
C107	-H10B	0.9600	C401	-C402	1.383(9)
C301	-C310	1.426(7)	C402	-C403	1.380(8)

C301	-C302	1.375(7)	C302	-H302	0.9300
C301	-C311	1.533(6)	C303	-H303	0.9300
C202	-H202	0.9300	C304	-H304	0.9300
C302	-C303	1.401(8)	C306	-H306	0.9300
C303	-C304	1.354(11)	C307	-H307	0.9300
C203	-H203	0.9300	C308	-H308	0.9300
C304	-C305	1.384(10)	C309	-H309	0.9300
C205	-H205	0.9300	C311	-H311	0.9800
C305	-C310	1.436(8)	C312	-H31A	0.9600
C305	-C306	1.426(11)	C312	-H31B	0.9600
C306	-C307	1.349(11)	C312	-H31C	0.9600
C206	-H206	0.9300	C401	-H401	0.9300
C207	-H20A	0.9600	C402	-H402	0.9300
C207	-H20B	0.9600	C403	-H403	0.9300

Table S5 - Crystal Data and Details of the Structure Determination for 5d

C	rystal Data		
Formula	C37	H41 N4 O4 S	2, C F3 O3 S
Formula Weight			818.96
Crystal System			Orthorhombic
Space group		P212121	(No. 19)
a, b, c [Angstrom]	11.1014(6)	12.1313(7)	29.7535(17)
V [Ang**3]			4007.0(4)
Z			4
D(calc) [g/cm**3]			1.358
Mu(MoKa) [/mm]			0.251
F(000)			1712
Crystal Size [mm]		0.08 x	0.10 x 0.15
Data	Collection		
Temperature (K)			293
Radiation [Angstrom]		МоКа	0.71069
Theta Min-Max [Deg]			1.4, 27.0
Dataset	-14	: 14 ; -15:	15 ; -38: 38
Tot., Uniq. Data, R(int)		33721,	8742, 0.033
Observed data [I > 0.0 sigma	L(I)]		6124
Re	finement		
Nref, Npar			8742, 473
R, wR2, S		0.0728,	0.2337, 1.00
w = 1/[\s^2^(Fo^2^)+(0.1470E)^2^+1.6658P]	where P=(Fo^	2^+2Fc^2^)/3
Max. and Av. Shift/Error			0.02, 0.00
Flack x			-0.03(11)
Min. and Max. Resd. Dens. [e	/Ang^3]		-0.57, 0.64

Tab	ole S6 -	Bond Distanc	es (Ar	ngstrom)	for 5d
S1	-010	1.419(4)	F92	-C91	1.31(2)
S1	-011	1.426(4)	F92	-C92	1.35(2)
S1	-N9	1.637(4)	F92	-F923	1.64(2)
S1	-C111	1.755(4)	F93	-C91	1.31(2)
S2	-020	1.415(5)	F93	-F923	1.25(2)
S2	-021	1.425(5)	F921	-C92	1.32(2)
S2	-N3	1.654(4)	F922	-C92	1.32(2)
S2	-C211	1.745(5)	F922	-C91	1.72(2)
S9	-S92	0.517(5)	F923	-C91	1.32(2)
S9	-091	1.425(9)	F923	-C92	1.32(2)
S9	-092	1.424(5)	091	-0921	0.865(16)
S9	-093	1.424(7)	093	-0923	0.773(14)
S9	-0921	1.624(11)	N3	-C4	1.459(6)
S9	-0923	1.161(10)	N3	-C2	1.478(6)
S9	-C91	1.785(13)	Νб	-C5	1.514(5)
S92	-093	1.861(7)	Νб	-C7	1.501(5)
S92	-0921	1.424(11)	Νб	-C311	1.565(6)
S92	-0923	1.425(8)	N9	-C8	1.466(6)
S92	-C91	1.341(13)	N9	-C10	1.465(6)
S92	-C92	1.784(15)	N12	-C11	1.339(6)
S92	-092	1.425(5)	N12	-C1	1.342(6)
S92	-091	1.519(8)	NG	-Н6	0.9100
F91	-F923	1.40(2)	C1	-C403	1.371(7)
F91	-F921	1.17(2)	C1	-C2	1.500(7)
F91	-C92	1.10(2)	C4	-C5	1.512(6)
F91	-C91	1.316(18)	C7	-C8	1.520(6)
F92	-F93	1.63(2)	C10	-C11	1.509(7)
F92	-F922	1.10(2)	C11	-C401	1.376(7)
C31	-C311	1.523(6)	C114	-C117	1.543(8)
C31	-C310	1.437(7)	C114	-C115	1.408(9)
C31	-C32	1.365(7)	C115	-C116	1.343(8)
C32	-C33	1.409(8)	C32	-H32	0.9300
C33	-C34	1.348(10)	C33	-H33	0.9300
C34	-C35	1.384(9)	C34	-H34	0.9300
C35	-C36	1.414(12)	C36	-Н36	0.9300
C35	-C310	1.431(7)	C37	-H37	0.9300

C36	-C37	1.341(15)	C38	-H38	0.9300
C37	-C38	1.443(15)	C39	-H39	0.9300
C38	-C39	1.370(10)	C211	-C216	1.370(9)
C39	-C310	1.395(8)	C211	-C212	1.394(9)
C2	-H2A	0.9700	C112	-H112	0.9300
C2	-H2B	0.9700	C212	-C213	1.400(8)
C4	-H4A	0.9700	C113	-H113	0.9300
C4	-H4B	0.9700	C213	-C214	1.371(11)
C5	-H5B	0.9700	C214	-C215	1.352(11)
C5	-H5A	0.9700	C214	-C217	1.523(8)
C7	-H7B	0.9700	C115	-H115	0.9300
C7	-H7A	0.9700	C215	-C216	1.369(8)
C8	-H8B	0.9700	C116	-H116	0.9300
C8	-H8A	0.9700	C117	-H11A	0.9600
C10	-H10A	0.9700	C117	-H11B	0.9600
C10	-H10B	0.9700	C117	-H11C	0.9600
C111	-C112	1.394(7)	C91	-C92	0.71(2)
C111	-C116	1.395(7)	C311	-C312	1.519(7)
C112	-C113	1.368(8)	C212	-H212	0.9300
C113	-C114	1.339(9)	C213	-H213	0.9300
C215	-H215	0.9300	C311	-H311	0.9800
C216	-H216	0.9300	C312	-H31B	0.9600
C217	-H21C	0.9600	C312	-H31C	0.9600
C217	-H21A	0.9600	C312	-H31A	0.9600
C217	-H21B	0.9600	C401	-H401	0.9300
C401	-C402	1.346(8)	C402	-H402	0.9300
C402	-C403	1.381(8)	C403	-н403	0.9300