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Table S-1. UV–vis absorption spectra of H2QBS and compounds 1-5. 

S-2. UV–vis absorption spectral change of compounds 1-5 in DMSO upon irradiation 

with 365 nm and 450 nm light. 

S-3. The absorption procedure of compound 2. 

S-4. EDS for I2 in compound 2 

S-5. XRPD for I2 in compound 2 

S-6. FT-Raman I2 in compound 2 

S-7. TGA curve of I2 in compound 2  

S-8. TGA curve of compounds 1-5. 

S-9. XRPD curve of compounds 1-5.  

S-10. 
1
H NMR for H2QBS.  

S-11. 
1
H NMR for compound 1 upon UV (λ = 254 nm) irradiation for 0 h (a) and 60 h 

(b) and 132 h (c), DMSO-d6 as the solvent) 

S-12. The specific hydrogen bond geometries in the crystal structure of 3 and 5 are 

also provided in the supplemental information. 
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Table S-1. UV–VIS absorption spectral about H2QBS and compounds 1-5 

 

Compound Solvent λ1(nm) λ2(nm) 

H2QBS CH3OH 390 ～480 

H2QBS DMF 396 - 

H2QBS DMSO 400 - 

1 DMSO 398 526 

2 DMSO 398 466 

3 DMSO 398 480 

4 DMSO 398 487 

5 DMSO 398 491 

S-2. UV–vis absorption spectral change of compounds 1-5 in DMSO upon 

irradiation with 365 nm and 450 nm light 
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Fig. S-2-1.(A) UV–vis absorption spectral change of compounds 1-5 in DMSO upon irradiation with 365 nm light 

(0 min, black; 5min, red, 10 min, green; 20 min, blue; 30 min, purple, a for compound 1, b for compound 2, c for 

compound 3, d for compound 4 and e for compound 5, c=5×10-5M for 1, 2.5×10-5M for 2, 3×10-5M for 3, 

1.5×10-5M for 4, 3.5×10-5M for 5 ); (B) UV–vis absorption spectral change of compounds 1-5 in DMSO upon 

irradiation with 450 nm light (f for compound 1, g for compound 2, h for compound 3, i for compound 4 and j for 

compound 5)  

S-3. I2 absorption procedure of compound 2 

Compound 2 was immersed in solution of I2 (20 mg) and I2 (140 mg) in CCl4 (20 mL) 

in closed tube for 4h respectively, then filtered. Two powders of 2-1 (dark red) and 

2-2 (brown) were washed thoroughly with CCl4 and Et2O for several times till the 

solution was colorless. The mixture was characterized by SEM-EDS, Raman spectra 

and TGA.  

According to the calculation of PLATON software [1], no residual solvent accessible 

void in compound 1, but the proportion of voids in the 2D layer of compound 2 is 

relatively large (38.9%). Guest molecules such as I2 may be incorporated between 
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layers. The crystals of 2 are dried in vacuum for removal of the lattice solvents before 

the I2 absorption experiment [2]. Compound 2 was immersed in solution of I2 (20 mg) 

and I2 (140 mg) in CCl4 (20 mL) in closed tube for 4h respectively, then filtered. Two 

powders of 2-1 (dark red) and 2-2 (brown) were washed thoroughly with CCl4 and 

Et2O for several times till the solution was colorless. The mixture was characterized 

by SEM-EDS, Raman spectra and TGA.  

Crystals absorbing I2 turn brown color and lose their crystallization gradually. Two 

kinds of powders 2-1 and 2-2 are obtained according to absorbed amount of I2. Both 

are characterized by SEM-EDS, Raman spectrum, XRPD and TGA(See SI). The 

result of SEM-EDS show I element in two samples. The Raman spectra of 2-1 show a 

typical band at 220 cm
−1

, which indicates free I2 molecules are occupied in compound 

[14(b), 15]. But when compound 2 absorbs more I2 molecules, the intensity of FT- 

Raman spectrum of compound 2-2 becomes weaken, broaden and blue-shifted [3].  

The thermal stability of 2 is surprisingly high and the decomposition temperature is 

about 480°C, which can be ascribed to the loss of all organics and coordinated 

solvents [4]. The composition of the residue (48.2%) may be ascribed to the lead salt 

mixture such as 0.8 PbSO4 (49.4%, calculated), and 0.2 PbS (39%, calculated 

according to Pb). The thermal decomposition of 2-1 is characterized by a step (2.9%) 

from room temperature to 150 °C corresponding to a total of 0.07 I2 molecules (2.8%, 

calculated value). After that the compound keeps stable till 450°C, similar with the 

high stability of compound 2. The composition of the residue (41.4%) may be 

compound due to the high decomposition temperature of lead salts such as 0.3 PbSO4 

(48.1%, calculated), and 0.7 PbS (37.9%, calculated according to Pb). The thermal 

decomposition of 2-2 is different from 2 and 2-1. The TG curve is characterized by 
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three steps from room temperature to 800 °C corresponding to a total of solvent 

molecules of crystallization, all organics and four iodine molecules. The 15.9% 

residue includes 0.3 PbSO4 and 0.7 PbS (calculated value is 14.5% for PbS, 18.4% for 

PbSO4) respectively. It may be ascribed to the interaction of Pb and I2 so that the 

thermal stability of 2-2 is changed in some degree.  

S-4. EDS for I2 in compound 2 

            
Fig. S-4-1. EDS for compound 2-1                           Fig. S-4-2. EDS for compound 2-2 

 

S-5. XRPD for I2 in compound 2 

 

S-5-1. XRPD for I2 in compound 2 
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S-6. FT-Raman I2 in compound 2 

     

Fig. S-6-1. FT-Raman I2 in compound 2(compound 2, black, compound 2-1, green and compound 2-2, red) 

S-7. TGA curve of I2 in compound 2 

     

Fig. S-7-1.TGA curve of compound 2-1              Fig. S-7-2.TGA curve of compound 2-2 

S-8. TGA study  

The thermal decomposition of 1 is characterized by a dehydration step (14.4%) from 

room temperature to 96°C corresponding to a total of three water molecules, including 

one water molecule of crystallization and two water molecule of coordination, 

respectively (13.0%, calculated value); the following step (51.2%) from 96 to 586 °C, 

corresponds to the decomposition of all organics (calculated value, 52.1%); The final 

residue of 1 is 34.2% at 749.3°C (calculated 34.0%), assigned to Na2SO4. 

For 2, the thermal stability is surprisingly high and the decomposition temperature is 

about 480°C, which can be ascribed to the loss of all organics and coordinated 

solvents. The composition of the residue (48.2%) may be compound due to the high 
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decomposition temperature of lead salts such as 0.8%PbSO4 (49.4%, calculated), and 

0.2%PbS (39%, calculated according to Pb, with the oxygen atom may be obtained 

from floating N2 atmosphere).  

The thermal decomposition of 3 shows a slow dehydration step (3.1%) from 25- 

121°C , which is probably due to the compound obtained from water solution without 

further dryness and free water molecule leaves from material surface. The following 

dehydration step (23%), from 121-485°C, corresponds to a total of two DMSO 

molecules of coordination (24.8%, calculated value); the following steps are the 

decomposition of organic ligands and sulfonate. The final residue of 3 is 14.8% at 

967.06°C (calculated 12.9%), assigned to ZnO. 

The thermal decomposition of 4 is characterized by a dehydration step (24.3%) from 

room temperature to 469 °C, which is probably due to the compound obtained from 

water solution without further dryness, one 
i
PrOH molecule and one DMSO molecule 

(25.7%, calculated value); the following step from 469 to 800 °C, corresponds to the 

decomposition of all organics and sulfate group; the 31.2% residue includes MnSO4 

(calculated value is 29% for MnSO4).  

The thermal decomposition of 5 is characterized by a dehydration step (3.1%) from 

room temperature to 134 °C corresponding to a total of two water molecules (3.2%, 

calculated value); the following step from 134 to 800 °C, corresponds to the 

decomposition of all organics and sulfate group; The residue (18.6%) is consistent 

with the calculated value (18.8% ), assuming CdSO4 as the final product.  
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Fig. S-8-1. TGA curve of compound 1              Fig. S-8-2. TGA curve of compound 2 

     

Fig. S-8-3. TGA curve of compound 3                     Fig. S-8-4. TGA curve of compound 4 

 

Fig. S-8-5. TGA curve of compound 5 

 

S-9. XRPD curve of compounds 1-5 
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Fig. S-9-1. XRPD for compound 1                           Fig. S-9-2. XRPD for compound 2 

                   

Fig. S-9-3. XRPD for compound 3                           Fig. S-9-4. XRPD for compound 4 

 
Fig. S-9-5. XRPD for compound 5 

 

S-10. 
1
H NMR for H2QBS  

 

Fig. S-10-1. 1H NMR for H2QBS in DMSO-d6 (c=7.6×10-2 mol/L) 
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Fig. S-10-2. 1H NMR for H2QBS in CD3OD (c=7.6×10-2 mol/L) 

S-11. 
1
H NMR for compound 1 upon UV(λ=254 nm) irradiation for 0 h (a) and 

60 h (b) and 132 h (c), DMSO-d6 as the solvent)  

 

Fig. S-11-1. 1H NMR for compound 1 upon UV(λ = 254 nm) irradiation (c = 4.9×10-2 mol/L) 
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S-12. Hydrogen bond geometries in the crystal structure of 3 and 5 

S-12-1. Hydrogen bond geometries in the crystal structure of 3 

Compound D-H...A H...A(Å) D...A(Å) D-H...A(º) 

3 C(17)-H(17A)...O(7)#5 2.53 3.429(17) 153.5 

C(17)-H(17A)...O(7')#5 2.50 3.440(15) 164.5 

 

Symmetry transformations used to generate equivalent atoms for 3:  #1 -x+2, -y+1, -z  #2 -x+1, -y+1, -z #3 -x+1, 

y-1/2, -z+1/2 #4 x+1, y-1, z #5 x+1, y, z 

S-12-2. Hydrogen bond geometries in the crystal structure of 5 

Compound D-H...A H...A(Å) D...A(Å) D-H...A(º) 

 

 

5 

O(14)-H(14B)...O(2) 2.41(6) 2.960(5) 125(6) 

O(14)-H(14B)...O(8) 2.27(5) 2.908(6) 135(7) 

O(14)-H(14A)...O(3) 1.89(3) 2.685(5) 165(9) 

O(13)-H(13B)...O(1) 1.88(2) 2.680(6) 165(7) 

O(13)-H(13A)...O(3) 2.49(5) 3.012(6) 122(5) 

O(11)-H(11B)...O(8) 2.61(6) 3.024(6) 113(5) 

O(11)-H(11B)...O(2) 2.110(17) 2.916(6) 169(6) 

O(11)-H(11A)...N(1) 2.53(2) 3.318(7) 165(6) 

O(10)-H(10B)...O(7) 2.239(16) 3.045(5) 169(6) 

O(10)-H(10A)...O(5) 1.91(2) 2.706(5) 163(6) 

Symmetry transformations used to generate equivalent atoms for 5: #1 x-1, y-1, z #2 x+1, y+1, z. 
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