Supporting Information for

Structures, Luminescent and Magnetic Properties of Six Lanthanide-Organic Frameworks: Observation of Slow Magnetic Relaxation Behavior in the Dy^{III} Compound

Yin-Ling Hou,^{1,2} Gang Xiong,^{1,2} Bo Shen,² Bin Zhao,^{2,*} Zhi Chen,² Jian-Zhong Cui^{1,*}

¹ Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and TKL of Metal and

Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.

² Department of Chemistry, Tianjin University, Tianjin, 300072, China.

Fig. S1 (a) The distorted pentagonal-bipyramidal coordination polyhedron of the Tb1, and (b) the distorted square antiprism coordination polyhedron of the Tb2.

Fig. S2 Thermogravimetric analyses (TGA) curves of 1-6.

¹ Department of Chemistry, Tianjin University, Tianjin, 300072, China. E-mail: cuijianzhong@tju.edu.cn

² Department of Chemistry, Nankai University, Tianjin 300071, China. E-mail: zhaobin@nankai.edu.cn

Fig. S3 The emission spectrum of the ligand H₂ispc.

Fig. S4 Luminescence decay curves of compounds 2 (a), 4 (b), and 5 (c).

Fig. S5 The χ_{M}^{-1} versus *T* and the Curie-Weiss linear fit of **3**.

Fig. S6 Temperature dependence of the in-phase (χ') ac susceptibilities for **5** at the indicated frequencies and in zero dc field.

Fig. S7 Temperature dependence of the in-phase (χ') ac susceptibilities for **5** at the indicated frequencies in $H_{dc} = 5000$ Oe.

compound	1 (Pr)	2 (Eu)	3 (Gd)	4 (Tb)	5 (Dy)	6 (Ho)		
formula	C ₄₅ H ₃₆ O ₂₇ -							
	S_3Pr_2	S_3Eu_2	S_3Gd_2	S_3Tb_2	S_3Dy_2	S_3Ho_2		
fw	1386.74	1408.84	1419.42	1422.76	1429.92	1434.78		
<i>T</i> (K)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)		
crystal	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic		
system								
space	<i>P</i> -1							
group								
Ζ	2	2	2	2	2	2		
<i>a</i> (Å)	9.3379(6)	9.2706(3)	9.2654(3)	9.2574(19)	9.1999(6)	9.1671(18)		
$b(\text{\AA})$	15.7099(14)	15.6634(7)	15.6423(7)	15.601(3)	15.578(3)	15.520(3)		
$c(\text{\AA})$	22.4311(12)	22.3100(8)	22.2867(10)	22.274(4)	22.142(5)	22.199(4)		
<i>α</i> (°)	102.474(6)	102.250(3)	102.154(4)	102.19(3)	102.856(17)	102.89(3)		
β (°)	101.713(5)	101.468(3)	101.481(3)	101.58(3)	101.552(12)	101.79(3)		
γ(°)	104.905(7)	104.507(3)	104.445(3)	104.32(3)	104.517(12)	104.14(3)		
$V(\text{\AA}^3)$	2986.0(4)	2954.21(19)	2947.9(2)	2936.0(10)	2882.7(9)	2871.3(10)		
D _{calcd}	1.542	1.584	1.599	1.609	1.647	1.660		
$(g \cdot cm^{-3})$								
$\mu(mm^{-1})$	1.796	2.289	2.416	2.576	2.762	2.926		
obs reflns	10511	10382	10290	10278	10062	10086		
$\Box heta$	2.42 / 25.01	2.44 / 25.01	2.44 / 25.01	2.36 / 25.01	2.38 / 25.01	2.38 / 25.01		
range (°)								
<i>F</i> (000)	1376	1392	1396	1400	1404	1408		
GOF on	1.046	1.047	1.074	1.062	1.067	1.102		
F^2								
R[int]	0.0499	0.0485	0.0428	0.0384	0.0763	0.0623		
R_1^{a}/wR_2^{b}	0.0961,	0.0935,	0.1010,	0.0839,	0.1059,	0.1203,		
$(I > 2\sigma(I))$	0.2791	0.2523	0.2693	0.2314	0.2858	0.3001		
R_1/wR_2	0.1262,	0.1213,	0.1202,	0.1043,	0.1500, 0.3225	0.1411,		
(all data)	0.3045	0.2766	0.2846	0.2525		0.3175		
^a $R_1 = \Sigma \parallel F_0 \mid - F_c \parallel \Sigma F_0 $ and ^b $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$.								

Table S1 Crystallographic Data for Compounds 1-6 for Normal Methods.

Table S2 Selected Bond Lengths (Å) for Compounds 1-6

Atom	Atom	Length/Å	Atom	Atom	Length/Å				
Compound 1									
Pr1	01	2.523(5)	Pr2	03	2.376(4)				
Pr1	O2	2.397(5)	Pr2	O9 ⁵	2.469(5)				
Pr1	O4	2.414(4)	Pr2	O11	2.519(4)				

Pr1	O10 ²	2.352(4)	Pr2	O12	2.609(5)				
Pr1	$O20^3$	2.383(5)	Pr2	013	2.487(4)				
Pr1	O21 ¹	2.492(5)	Pr2	O14	2.409(5)				
Pr1	O27 ⁴	2.458(4)	Pr2	O19 ⁶	2.472(5)				
			Pr2	O26 ⁴	2.381(4)				
		Comp	ound 2						
Eu1	01	2.345(5)	Eu2	O2	2.354(4)				
Eu1	O7 ²	2.332(4)	Eu2	O8 ⁵	2.411(5)				
Eu1	O10 ¹	2.432(5)	Eu2	O9	2.417(5)				
Eu1	O15 ³	2.393(5)	Eu2	O16 ³	2.329(4)				
Eu1	O17	2.354(4)	Eu2	O18	2.329(4)				
Eu1	O25 ⁴	2.286(4)	Eu2	O24 ⁶	2.395(4)				
Eu1	O28	2.485(5)	Eu2	O26	2.555(5)				
			Eu2	O27	2.461(5)				
		Comp	ound 3						
Gd1	01	2.320(6)	Gd2	O2	2.378(6)				
Gd1	$O7^1$	2.390(7)	Gd2	O8 ⁵	2.414(7)				
Gd1	09	2.320(7)	Gd2	O10	2.340(7)				
Gd1	O16 ²	2.380(7)	Gd2	O15 ⁶	2.287(6)				
Gd1	O18 ³	2.388(7)	Gd2	O17	2.297(7)				
Gd1	O24 ⁴	2.346(7)	Gd2	O23 ⁴	2.339(6)				
Gd1	O26	2.455(7)	Gd2	O25	2.416(10)				
Gd1	O27	2.526(8)							
		Comp	ound 4						
Tb1	O2	2.339(4)	Tb2	01	2.303(4)				
Tb1	$O8^1$	2.259(4)	Tb2	O 7 ⁴	2.365(4)				
Tb1	O10	2.318(4)	Tb2	O9	2.331(4)				
Tb1	O14 ²	2.364(4)	Tb2	O15 ²	2.297(4)				
Tb1	O17 ³	2.293(4)	Tb2	O16 ⁵	2.366(4)				
Tb1	O20	2.457(5)	Tb2	O21	2.429(4)				
Tb1	O22	2.401(4)	Tb2	O23	2.545(5)				
			Tb2	O25 ⁶	2.366(5)				
	Compound 5								
Dy1	01	2.381(6)	Dy2	O9 ²	2.310(7)				
Dy1	O2	2.360(6)	Dy2	O10 ³	2.362(6)				
Dy1	O3 ¹	2.284(6)	Dy2	O11 ²	2.321(6)				
Dy1	O4	2.307(6)	Dy2	O12	2.425(7)				

Dy1	O5	2.358(7)	Dy2	017	2.259(6)			
Dy1	07	2.323(6)	Dy2	O18	2.411(7)			
Dy1	O8	2.520(8)	Dy2	O27	2.273(7)			
Dy1	O28	2.368(6)						
Compound 6								
Ho1	01	2.378(8)	Ho2	O2	2.351(8)			
Ho1	O3	2.399(9)	Ho2	O8 ⁵	2.289(8)			
Ho1	$O9^1$	2.340(8)	Ho2	011	2.335(8)			
Ho1	O10	2.296(8)	Ho2	012	2.367(9)			
Ho1	O19 ²	2.306(9)	Ho2	013	2.566(12)			
Ho1	O21 ³	2.311(7)	Ho2	O14	2.284(7)			
Ho1	$O27^4$	2.247(8)	Ho2	O20 ⁶	2.289(8)			
			Ho2	O26 ⁴	2.334(7)			

 Table S3 Selected Bond Angles (deg) for Compounds 1-6

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°			
	Compound 1									
01	Pr1	O13 ¹	74.41(15)	03	Pr2	O9 ⁵	74.42(15)			
O2	Pr1	01	67.73(17)	O3	Pr2	011	142.03(17)			
O2	Pr1	O4	82.10(16)	O3	Pr2	O12	131.57(16)			
O2	Pr1	O13 ¹	136.95(14)	O3	Pr2	013	78.02(14)			
O2	Pr1	O21 ¹	128.91(17)	O3	Pr2	O14	76.40(16)			
O2	Pr1	O27 ²	75.68(15)	O3	Pr2	O19 ⁶	137.23(18)			
O4	Pr1	01	91.39(19)	O3	Pr2	O26 ²	78.14(15)			
O4	Pr1	O13 ¹	119.26(15)	O9 ⁵	Pr2	011	71.28(16)			
O4	Pr1	O21 ¹	71.16(15)	O9 ⁵	Pr2	012	135.56(16)			
O4	Pr1	O27 ²	97.50(15)	O9 ⁵	Pr2	013	78.20(16)			
O10 ³	Pr1	01	86.43(18)	O9 ⁵	Pr2	O19 ⁶	123.74(16)			
O10 ³	Pr1	O2	88.92(16)	011	Pr2	012	69.48(17)			
O10 ³	Pr1	O4	170.91(16)	013	Pr2	011	109.80(16)			
O10 ³	Pr1	O13 ¹	68.61(14)	013	Pr2	012	134.99(15)			
O10 ³	Pr1	O20 ⁴	99.00(16)	O14	Pr2	O9 ⁵	150.76(15)			
O10 ³	Pr1	O21 ¹	116.14(15)	O14	Pr2	011	137.02(16)			
O10 ³	Pr1	O27 ²	78.85(15)	O14	Pr2	012	68.45(16)			
O20 ⁴	Pr1	01	144.01(18)	O14	Pr2	013	93.93(16)			
O20 ⁴	Pr1	O2	147.24(16)	014	Pr2	O19 ⁶	78.00(17)			

O20 ⁴	Pr1	O4	87.95(17)	O19 ⁶	Pr2	011	77.31(18)
O 20 ⁴	Pr1	O13 ¹	74.67(14)	O19 ⁶	Pr2	O12	65.82(17)
O 20 ⁴	Pr1	O21 ¹	75.57(17)	O19 ⁶	Pr2	013	70.19(16)
O 20 ⁴	Pr1	O27 ²	74.80(16)	O26 ²	Pr2	O9 ⁵	82.44(16)
O21 ¹	Pr1	01	70.24(18)	O26 ²	Pr2	011	81.66(16)
O21 ¹	Pr1	O13 ¹	48.28(13)	O26 ²	Pr2	O12	72.08(16)
O27 ²	Pr1	01	140.70(17)	O26 ²	Pr2	013	152.54(15)
O27 ²	Pr1	O13 ¹	130.48(14)	O26 ²	Pr2	O14	93.53(16)
O27 ²	Pr1	O21 ¹	148.58(16)	O26 ²	Pr2	O19 ⁶	137.26(17)
			Comp	ound 2	2		
01	Eu1	$O9^1$	120.33(14)	O2	Eu2	O 8 ⁵	79.63(16)
01	Eu1	O 10 ¹	72.56(16)	O2	Eu2	09	92.14(16)
01	Eu1	O15 ²	96.84(16)	O2	Eu2	O24 ⁶	151.43(16)
01	Eu1	O17	82.54(15)	O2	Eu2	O26	69.10(17)
01	Eu1	O28	92.3(2)	O2	Eu2	O27	136.61(16)
O 7 ³	Eu1	01	88.08(17)	O8 ⁵	Eu2	09	71.80(16)
O 7 ³	Eu1	$O9^1$	74.64(14)	O 8 ⁵	Eu2	O26	66.13(17)
O 7 ³	Eu1	O10 ¹	76.24(16)	O 8 ⁵	Eu2	O27	76.10(19)
O 7 ³	Eu1	O15 ²	73.88(15)	09	Eu2	O26	136.16(17)
O 7 ³	Eu1	017	146.69(17)	09	Eu2	O27	113.15(16)
O 7 ³	Eu1	O28	143.72(17)	O16 ²	Eu2	O2	94.76(16)
O 10 ¹	Eu1	$O9^1$	48.03(14)	O16 ²	Eu2	O8 ⁵	135.75(17)
O 10 ¹	Eu1	O28	69.35(19)	O16 ²	Eu2	09	152.41(16)
O15 ²	Eu1	$O9^1$	129.58(14)	O16 ²	Eu2	O18	78.28(17)
O15 ²	Eu1	$O10^1$	148.59(15)	O16 ²	Eu2	O24 ⁶	83.62(15)
O15 ²	Eu1	O28	141.76(17)	O16 ²	Eu2	O26	70.87(18)
017	Eu1	$O9^1$	137.02(14)	O16 ²	Eu2	O27	78.99(18)
017	Eu1	O10 ¹	129.80(17)	018	Eu2	O2	76.89(16)
O17	Eu1	O15 ²	75.61(16)	018	Eu2	O8 ⁵	140.13(19)
017	Eu1	O28	68.86(17)	018	Eu2	09	77.35(16)
O25 ⁴	Eu1	01	170.47(14)	018	Eu2	O24 ⁶	74.85(16)
O25 ⁴	Eu1	O7 ³	99.23(16)	O18	Eu2	O26	131.07(16)
O25 ⁴	Eu1	O 9 ¹	67.93(14)	O18	Eu2	O27	140.80(18)
O25 ⁴	Eu1	O10 ¹	114.99(16)	O24 ⁶	Eu2	$O8^5$	120.84(15)
O25 ⁴	Eu1	O15 ²	79.50(16)	O24 ⁶	Eu2	09	77.71(15)
O25 ⁴	Eu1	O17	88.01(15)	O24 ⁶	Eu2	O26	135.30(17)
O25 ⁴	Eu1	O28	85.5(2)	O24 ⁶	Eu2	O27	71.23(16)

O28	Eu1	O 9 ¹	74.01(15)	O27	Eu2	O26	68.32(17)		
Compound 3									
01	Gd1	$O7^1$	152.5(3)	O2	Gd2	O7 ⁵	129.7(2)		
01	Gd1	O16 ²	84.3(2)	O2	Gd2	O 8 ⁵	149.2(3)		
01	Gd1	O18 ³	135.7(3)	O2	Gd2	O25	140.3(3)		
01	Gd1	O24 ⁴	94.2(3)	O 8 ⁵	Gd2	O 7 ⁵	47.2(2)		
01	Gd1	O26	79.6(3)	O 8 ⁵	Gd2	O25	70.3(3)		
01	Gd1	O27	70.6(3)	O10	Gd2	O2	75.3(2)		
$\mathbf{O7}^1$	Gd1	O26	113.1(3)	O10	Gd2	O7 ⁵	136.5(2)		
$\mathbf{O7}^1$	Gd1	O27	136.1(3)	O10	Gd2	O 8 ⁵	130.4(3)		
09	Gd1	01	78.7(3)	O10	Gd2	O25	67.7(3)		
09	Gd1	$O7^1$	76.7(3)	O15 ⁶	Gd2	O2	80.0(2)		
09	Gd1	O16 ²	75.4(3)	O15 ⁶	Gd2	O7 ⁵	67.2(2)		
09	Gd1	O18 ³	139.7(3)	O15 ⁶	Gd2	O 8 ⁵	113.4(2)		
09	Gd1	O24 ⁴	76.7(2)	O15 ⁶	Gd2	O10	87.7(3)		
09	Gd1	O26	141.3(3)	O15 ⁶	Gd2	O17	98.7(3)		
09	Gd1	O27	131.2(3)	O15 ⁶	Gd2	O23 ⁴	170.9(2)		
O16 ²	Gd1	O 7 ¹	77.8(2)	O15 ⁶	Gd2	O25	84.6(3)		
O16 ²	Gd1	O18 ³	120.3(3)	O17	Gd2	O2	74.3(2)		
O16 ²	Gd1	O26	70.9(3)	O17	Gd2	O7 ⁵	74.3(2)		
O16 ²	Gd1	O27	135.3(3)	O17	Gd2	O8 ⁵	76.3(3)		
O18 ³	Gd1	O 7 ¹	71.8(3)	O17	Gd2	O10	147.2(3)		
O18 ³	Gd1	O26	75.8(3)	O17	Gd2	O23 ⁴	88.3(3)		
O18 ³	Gd1	O27	66.2(3)	O17	Gd2	O25	144.7(3)		
O24 ⁴	Gd1	O 7 ¹	91.8(2)	O23 ⁴	Gd2	O2	96.6(2)		
O24 ⁴	Gd1	O16 ²	151.7(3)	O23 ⁴	Gd2	O7 ⁵	120.6(2)		
O24 ⁴	Gd1	O18 ³	79.8(3)	O23 ⁴	Gd2	$O8^5$	73.7(2)		
O24 ⁴	Gd1	O26	136.7(3)	O23 ⁴	Gd2	O10	83.3(3)		
O24 ⁴	Gd1	O27	69.0(3)	O23 ⁴	Gd2	O25	93.1(3)		
O26	Gd1	O27	68.6(3)	O25	Gd2	O7 ⁵	74.7(3)		
			Comp	ound 4					
O2	Tb1	O14 ¹	75.82(15)	01	Tb2	O23	130.94(16)		
O2	Tb1	O20	68.30(16)	01	Tb2	O25 ⁶	77.38(16)		
O2	Tb1	O22	130.26(16)	O 7 ⁴	Tb2	O16 ⁵	120.50(13)		
$O8^2$	Tb1	O2	87.79(14)	O 7 ⁴	Tb2	O21	71.64(16)		
$O8^2$	Tb1	O10	171.28(13)	O 7 ⁴	Tb2	O23	134.80(16)		
O 8 ²	Tb1	O14 ¹	80.49(14)	O 7 ⁴	Tb2	O25 ⁶	77.63(14)		

O 8 ²	Tb1	O17 ³	97.59(15)	09	Tb2	O 7 ⁴	152.38(14)
$O8^2$	Tb1	O20	85.40(19)	09	Tb2	O16 ⁵	79.40(14)
$O8^2$	Tb1	O22	112.89(13)	09	Tb2	O21	135.03(16)
O10	Tb1	O2	83.55(14)	09	Tb2	O23	68.72(16)
O10	Tb1	O 14 ¹	96.33(14)	09	Tb2	O25 ⁶	92.61(15)
O10	Tb1	O20	92.32(19)	O15 ¹	Tb2	01	78.33(16)
O10	Tb1	O22	73.90(13)	O15 ¹	Tb2	$O7^4$	84.96(14)
O 14 ¹	Tb1	O20	141.82(15)	O15 ¹	Tb2	09	93.45(14)
O 14 ¹	Tb1	O22	148.96(14)	O15 ¹	Tb2	O16 ⁵	134.96(16)
O17 ³	Tb1	O2	147.89(14)	O15 ¹	Tb2	O21	77.98(16)
O17 ³	Tb1	O10	89.25(15)	O15 ¹	Tb2	O23	69.81(17)
O17 ³	Tb1	O 14 ¹	73.95(14)	O15 ¹	Tb2	O25 ⁶	152.98(15)
O17 ³	Tb1	O20	143.47(15)	O16 ⁵	Tb2	O21	76.68(16)
O17 ³	Tb1	O22	76.49(15)	O16 ⁵	Tb2	O23	66.17(17)
O22	Tb1	O20	68.99(17)	O16 ⁵	Tb2	O25 ⁶	72.05(15)
01	Tb2	$O7^4$	75.40(14)	O21	Tb2	O23	66.89(17)
01	Tb2	09	77.28(13)	O25 ⁶	Tb2	O21	114.89(16)
01	Tb2	O16 ⁵	140.29(17)	O25 ⁶	Tb2	O23	136.48(16)
01	Tb2	O21	140.67(15)				
			Comp	ound 5			
01	Dy1	08	67.8(3)	O9 ²	Dy2	05	120.6(2)
O2	Dy1	01	72.1(2)	O9 ²	Dy2	O10 ³	97.0(2)
O2	Dy1	08	135.7(3)	O9 ²	Dy2	O11 ²	83.4(2)
O2	Dy1	O28	120.9(2)	O9 ²	Dy2	O12	93.7(3)
O3 ¹	Dy1	01	78.6(2)	O9 ²	Dy2	O18	72.9(2)
O3 ¹	Dy1	O2	83.5(2)	O10 ³	Dy2	05	129.0(2)
O3 ¹	Dy1	O4	78.0(2)	O10 ³	Dy2	O12	141.3(3)
O3 ¹	Dy1	05	152.2(2)	O10 ³	Dy2	O18	148.6(2)
O3 ¹	Dy1	07	94.6(2)	O11 ²	Dy2	05	136.9(2)
O3 ¹	Dy1	O8	71.2(3)	O11 ²	Dy2	$O10^3$	75.4(2)
O3 ¹	Dy1	O28	135.6(2)	O11 ²	Dy2	O12	69.1(2)
O4	Dy1	01	141.4(2)	O11 ²	Dy2	O18	130.6(2)
O4	Dy1	O2	75.1(2)	012	Dy2	05	73.8(2)
O4	Dy1	05	77.5(2)	O17	Dy2	O5	67.5(2)
O4	Dy1	07	77.1(2)	O17	Dy2	$O9^2$	170.6(2)
O4	Dy1	08	130.5(2)	O17	Dy2	O10 ³	79.6(2)
04	Dv1	O28	140.5(3)	O17	Dy2	O11 ²	87.2(2)

05	Dy1	01	114.0(2)	O17	Dy2	012	83.8(3)
05	Dy1	02	77.7(2)	O17	Dy2	O18	114.4(2)
O5	Dy1	08	135.9(3)	O17	Dy2	O27	99.9(2)
O5	Dy1	O28	72.2(2)	O18	Dy2	O5	48.0(2)
O 7	Dy1	01	135.2(2)	O18	Dy2	012	70.0(3)
O 7	Dy1	O2	151.9(2)	O27	Dy2	O5	74.9(2)
O 7	Dy1	05	92.5(2)	O27	Dy2	O9 ²	87.5(2)
O 7	Dy1	08	68.1(2)	O27	Dy2	O10 ³	73.6(2)
O 7	Dy1	O28	79.5(2)	O27	Dy2	O11 ²	146.2(2)
O28	Dy1	01	75.7(2)	O27	Dy2	O12	144.2(2)
O28	Dy1	08	65.7(3)	O27	Dy2	O18	76.3(2)
			Comp	ound 6	5		
01	Ho1	03	70.3(3)	O8 ⁵	Ho2	O12	78.2(3)
$O9^1$	Ho1	01	148.5(3)	O8 ⁵	Ho2	013	69.0(4)
$O9^1$	Ho1	03	140.9(3)	O 8 ⁵	Ho2	O26 ⁴	84.1(3)
O10	Ho1	01	76.7(3)	011	Ho2	O2	72.6(3)
O10	Ho1	03	144.4(3)	011	Ho2	012	75.4(3)
O10	Ho1	O 9 ¹	73.7(3)	011	Ho2	013	66.5(4)
O10	Ho1	O19 ²	88.6(3)	012	Ho2	013	66.1(4)
O10	Ho1	O21 ³	147.2(3)	O14	Ho2	O2	77.6(3)
O19 ²	Ho1	01	72.6(3)	O14	Ho2	O8 ⁵	78.6(3)
O19 ²	Ho1	03	94.0(3)	O14	Ho2	011	139.9(3)
O19 ²	Ho1	O 9 ¹	95.9(3)	O14	Ho2	012	143.0(3)
O19 ²	Ho1	O21 ³	83.4(3)	O14	Ho2	013	129.3(4)
O21 ³	Ho1	01	129.8(3)	O14	Ho2	O20 ⁶	77.8(3)
O21 ³	Ho1	03	68.1(3)	014	Ho2	O26 ⁴	75.5(3)
O21 ³	Ho1	O 9 ¹	75.6(3)	O20 ⁶	Ho2	O2	94.9(3)
O27 ⁴	Ho1	01	114.9(3)	O20 ⁶	Ho2	O8 ⁵	92.5(3)
O27 ⁴	Ho1	03	84.1(3)	O20 ⁶	Ho2	011	78.5(3)
O27 ⁴	Ho1	O 9 ¹	80.2(3)	O20 ⁶	Ho2	O12	131.5(3)
O27 ⁴	Ho1	O10	98.2(3)	O20 ⁶	Ho2	013	66.2(4)
O27 ⁴	Ho1	O19 ²	170.8(3)	O20 ⁶	Ho2	O26 ⁴	153.2(3)
O27 ⁴	Ho1	O21 ³	87.5(3)	O26 ⁴	Ho2	O2	77.7(3)
O2	Ho2	012	114.8(3)	O26 ⁴	Ho2	011	122.1(3)
O2	Ho2	013	137.3(4)	O26 ⁴	Ho2	012	73.8(3)
$O8^5$	Ho2	O2	153.0(3)	O26 ⁴	Ho2	013	135.1(4)
O8 ⁵	Ho2	011	134.4(3)				

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013