Supporting information

Experimental details

X-ray data collections and structural determinations.

Diffraction data for crystals of the nickel(II)-chlorido complex with $Tp^{Me2,Br}$ derived from toluene (= $3^{Br} \cdot 0.5$ toluene) and an EtOH adduct of the nickel(II)-*m*CBA complex with $Tp^{Me2,Br}$ derived from EtOH (= $4^{Br}(EtOH)_2$) were collected using a Rigaku Satarn 70 CDD area detector system with graphite monochromated Mo-K α radiation. The crystals were mounted on loops using liquid paraffin flash cooled to 113 K and the data collections were carried at the same temperature. Diffraction measurement of the nickel(II)-*m*CBA complex with Tp^{iPr2} derived from pentane (= $4^{,H}$) was made on a Rigaku RAXIS IV imaging plate area detector with Mo K α radiation. The crystal was mounted on glass fiber and data collection was carried out at 213 K.

Crystallographic data and the result of refinement are summarized in Table S-1. Structure analyses were performed by using Win-GX program package.¹ The structures of the complexes were solved by the direct methods using SIR-92 program.² The structures were refined on F^2 with full-matrix least-squares methods using SHELXL-97.^{3,4} All non-hydrogen atoms except the carbon atoms of a disordered toluene molecule were refined anisotropically. Hydrogen atoms on the pyrazoly and phenyl groups were added in the riding model with C-H = 0.96 Å (for methyl groups), 0.98 Å (for methine groups) or 0.93 Å (for aromatic rings) with Uiso(H) = 1.2 *U*iso(attached atom). Hydrogen atoms attached on the boron centers of Tp^{R} and on the oxygen atoms of EtOH were refined isotropically. CCDC 874059 (3^{Br}.0.5toluene), CCDC 874060 (4^{Br}(EtOH)₂), and CCDC 163522 (4^{,H}) contain the supplementary crystallographic data for this paper. The deposited data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

References for supporting information

- 1 L. J. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837–838.
- 2 A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, *J. Appl. Crystallogr.*, 1994, **27**, 435–436.
- 3 G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
- 4 G. M. Sheldrick, *Acta. Crystallogr.*, 2008, **A64**, 112–122.

	$3^{Br} \cdot 0.5$ toluene	4 ^{Br} (EtOH) ₂	4' ^H
Formula	C _{16.5} H ₂₃ BBr ₃ ClN ₆ Ni	C ₂₆ H ₃₅ BBr ₃ ClN ₆ NiO ₄	C ₃₄ H ₅₀ BClN ₆ NiO ₂
Formula weight	674.13	840.30	679.77
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P2 ₁ /a (#14)	P1 (#2)	P2 ₁ /n (#14)
a/Å	10.8874(14)	10.897(5)	12.3257(10)
b/Å	19.586(3)	11.565(5)	18.8319(16)
c/Å	12.2781(16)	14.060(5)	15.697(2)
$\alpha/^{\circ}$	90	78.696(5)	90
β/°	90.982(4)	71.796(5)	95.5920(10)
$\gamma/^{\circ}$	90	82.924(5)	90
$V/Å^3$	2617.8(6)	1646.9(12)	3626.1(6)
Ζ	4	2	4
D (calc.)/g cm ⁻³	1.710	1.695	1.245
μ (Mo-K α)/mm ⁻¹	5.440	4.350	0.646
Unique reflections	5921	6621	7240
Reflections $I > 2\sigma(I)$	5720	6434	5422
Parameters refined	260	399	419
$\mathbf{R} (I > 2\sigma(I))$	0.0552	0.0340	0.0513
R (for all data)	0.0570	0.0350	0.0722
wR $(I > 2\sigma(I))$	0.1423	0.0899	0.1319
wR (for all data)	0.1444	0.0909	0.1391
GOF	1.115	1.107	1.044

Table S1Crystallographic data

Fig. S1 Dimeric structure of 3^{Br} drawn at the 30% probability level. All hydrogen atoms except boron-bounded ones on Tp^{Me2,Br} are omitted for clarity. The analyzed crystals obtained from a toluene solution exhibited green color due to five-coordinated nickel(II) centers. However, 3^{Br} had a monomeric structure with pseudo-tetrahedral nickel(II) center in the non-coordinating solvent such as toluene and CH₂Cl₂ as was supported by reddish brown solution color similar to that of the previously reported tetrahedral nickel(II)-bromido complex with Tp^{Me2}, namely [Ni^{II}(Br)(Tp^{Me2})] (P. J. Desrochers, J. Telser, S. A. Zvyagin, A. Ozarowski, J. Krzystek and D. A. Vicic, *Inorg. Chem.*, 2006, 45, 8930 – 8941).

Lengths (Å)				
Ni1-N11	2.011(3)	Ni1-N21	2.063(3)	
Ni1-N31	2.061(3)	Ni1–Cl1	2.3792(11)	
Ni1–Cl1'	2.3611(11)	Ni1…Ni1'	3.5415(10)	
Angles (deg)				
N11-Ni1-N21	92.28(14)	N11-Ni1-N31	92.16(13)	
N11-Ni1-Cl1	101.91(11)	N11-Ni1-Cl1'	104.84(11)	
N21-Ni1-N31	86.99(13)	N21-Ni1-Cl1	92.07(9)	
N21-Ni1-Cl1'	162.83(10)	N31-Ni1-Cl1	165.93(10)	
N31-Ni1-Cl1'	93.48(9)	Cl1-Ni1-Cl1'	83.32(4)	

Table S2Selected bond lengths (Å) and angles(deg) for $3^{Br} \cdot 0.5$ toluene.

Fig. S2 Molecular structure of 4^{Br}(EtOH)₂ drawn at the 30% probability level. Hydrogen atoms except those attached on the oxygen atoms of the coordinated EtOH molecules (i.e. O41 and O51) and the boron of Tp^{Me2,Br} (i.e. B1) are omitted for clarity.

Table S3	Selected bond	lengths (Å) and angles(deg)	for $4^{Br}(EtOH)_2$.
----------	---------------	------------	-------------------	------------------------

Lengths (Å)				
Ni1-N11	2.092(2)	Ni1-N21	2.086(2)	
Ni1-N31	2.092(2)	Ni1–O1	2.3792(11)	
Ni1-041	2.0838(18)	Ni1-051	2.1209(18)	
Angles (deg)				
N11-Ni1-N21	89.26(8)	N11-Ni1-N31	88.17(8)	
N11-Ni1-O1	177.89(7)	N11-Ni1-O41	91.96(8)	
N11-Ni1-O51	94.03(8)	N21-Ni1-N31	88.97(8)	
N21-Ni1-O1	89.05(8)	N21-Ni1-O41	174.02(7)	
N21-Ni1-O51	90.65(8)	N31-Ni1-O1	90.53(8)	
N31-Ni1-O41	96.91(8)	N31-Ni1-O51	177.77(8)	
01-Ni1-O41	89.85(7)	01-Ni1-O51	87.26(8)	
O41-Ni1-O51	83.42(7)			

Fig. S3 Molecular structure of **4**^{,**H**} drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Table S4 Selected bond lengths (Å) and angles(deg) for	4' ¹	H
---	-----------------	---

Lengths (Å)				
Ni1-N11	2.012(2)	Ni1-N21	2.011(2)	
Ni1-N31	2.015(2)	Ni1–O1	2.0908(18)	
Ni1–O2	2.085(2)			
Angles (deg)				
N11-Ni1-N21	90.19(9)	N11-Ni1-N31	92.51(8)	
N11-Ni1-O1	106.20(8)	N11-Ni1-O2	107.34(9)	
N21-Ni1-N31	92.06(9)	N21-Ni1-O1	100.41(8)	
N21-Ni1-O2	158.32(8)	N31-Ni1-O1	157.32(9)	
N31-Ni1-O2	99.62(8)	O1-Ni1-O2	63.00(7)	

Fig. S4 Time course of the oxygenation of cyclohexane with mCPBA mediated by 1^{X} (X = H, Br) in CF₃C₆H₅. Conditions: $[1^{X}] = 5.2$ mM in 5 mL of C₆H₅CF₃, Ni: *m*CPBA:C₆H₁₂ = 1:5:50, at 313 K, under argon.

Fig. S5 GC-MS spectra of the products obtained by oxygenation of cyclohexane with *m*CPBA mediated by $\mathbf{1}^{\mathbf{X}}$ in the presence of $\mathrm{H_2}^{18}\mathrm{O}$. Reactions in the presence of $\mathrm{H_2}^{16}\mathrm{O}$ were also examined as control. Conditions: $[\mathbf{1}^{\mathbf{X}}] = 2.6 \text{ mM}$ in 1 mL of CH₂Cl₂, Ni:*m*CPBA:H₂O:C₆H₁₂ = 1:50:500:2500, at 313 K, under argon. In a mass spectrum of cyclohexanol products, any signals attributed to the ¹⁸O-incorporated compounds could not be detected. In the spectra of cyclohexanone, a peak at *m*/*z* = 100 could be assigned as ¹⁸O-cyclohexanone.

Fig. S6 IR spectra of the CH₂Cl₂ solutions of *in situ* generated 2^{Br} (formed by the reaction of 1^{Br} with 2 equiv of *m*CPBA; top; black line), the parent 1^{Br} (bottom; gray line), and the sample once wormed up to room temperature (recorded at 223 K; dashed line). Both peaks at 1661 and 1643 cm⁻¹ disappeared by warm up of the solution. Therefore, we assigned the both peaks were attributed to the vC=O bands of the thermally unstable nickel(II)-acylperoxo species 2^{Br} , and one of two peaks might attribute to an aqua ligand adduct of 2^{Br} .

Fig. S7 IR spectra of the KBr pellet samples of **2**^{**'**H} (a; left) and **2**^{**'**Br} (b; right).

Fig. S8 Decay of $2^{,H}$ in Et₂O observed by time course UV/Vis spectra. Increasing absorbance at 429 nm indicated the formation of the mCBA complexes $4^{,H}$ and $5^{,H}$.

Fig. S9 ESI-MS spectrum of the decomposed products of 2^{Br} derived from the CD_2Cl_2 solution.

Fig. S10 ¹H NMR spectra of $2^{,Br}$ and its decomposed products mixture. (a) CD₂Cl₂ solution of $2^{,Br}$ recorded at 233 K. (b) Decomposed products mixture obtained from Et₂O solution of $2^{,Br}$ by standing at ambient temperature for one day under Ar and then evaporation. The spectrum was recorded at room temperature in C₆D₆. Marked signals denote the protons of $4^{,Br}$ (*) and $5^{,Br}$ (Δ), respectively.

Fig. S11 Eyring plots for the thermolysis of 2^{X} in CH₂Cl₂.

Activation parameters	2 ^H	2 ^{Br}
$\Delta H^{\ddagger} / \text{kcal} \cdot \text{mol}^{-1}$	10.2(7)	15.2(2)
ΔS^{\ddagger} / e.u.	-31.6(28)	-15.6(7)
$E_a / \text{kcal} \cdot \text{mol}^{-1}$	10.8(7)	15.7(2)
ln A	14.4(14)	22.5(4)

Table S5 Activation parameters the thermolysis of 2^{x} in CH₂Cl₂.