Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Information for:

Visible light-absorbing Rhenium(I) tricarbonyl complexes as triplet

photosensitizers in photooxidation and triplet-triplet annihilation

upconversion

Xiuyu Yi, Jianzhang Zhao,* Jifu Sun, Song Guo and Hongli Zhang

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China. Phone/Fax: +86 411 8498 6236

> E-mail: zhaojzh@dlut.edu.cn Group homepage: http://finechem.dlut.edu.cn/photochem

Table of Contents

1.0 NMR, HRMS and IR spectra	2
2.0 Emission spectroscopy of Rhenium(I) complexes, ligands and perylene	10
3.0 TTA upconversion details	14
4.0 Photooxidation details	16
5.0 DFT calculations details	19

Scheme S1. Synthesis of Re-0, Re-1 and Re-2. (a) *p*-toluenesulfonyl chloride, NaOH, H₂O, THF, 0°C, 3 h; NaI, acetone, room temperature, 24 h; (b) 4-hydroxybenzaldehyde, K₂CO₃, MeCN, 60°C, 12 h; (c) i) 2,4-dimethylpyrrole, TFA, DDQ, DCM, room temperature, 12 h; ii) Et₃N, BF₃·OEt₂, room temperature, 12 h; (d) NIS(1eq), DCM, 10-15°C, 1 h; (e) NIS(4eq), DCM, room temperature, 1 h; (f) tributyltin chloride, *n*-BuLi, DEE; (g) 2,5-dibromopyridine, Pd(PPh₃)₄, Xylene; (h) Trimethylsilylacetylene, Pd(PPh₃)₂Cl₂, PPh₃, CuI,THF/NEt₃; (i) TBAF, THF, Ar, room temperature; (j) Pd(PPh₃)₄, THF/NEt₃; (k) KIO₃, KI (l) NaH, n-C₄H₉Br; (m) K₂CO₃, CH₃OH/DCM, 3h; (n) Pd(PPh₃)₂Cl₂, PPh₃, CuI, THF/NEt₃; (o) toluene, 1 h.

Fig. S1 ¹H NMR of L-1 in CDCl₃ (400 MHz), 25°C.

Fig. S2 ¹³C NMR of L-1 in CDCl₃(100 MHz), 25°C.

Fig. S3 MALDI-HRMS of L-1, 25 °C.

Fig. S4 ¹H NMR of **Re-1** in CDCl₃ (400 MHz), 25°C.

Fig. S5 ¹³C NMR of Re-1 in CDCl₃(100 MHz), 25°C.

Fig. S6 MALDI-HRMS of Re-1, 25 °C.

Fig. S7 ¹H NMR of **L-2** in CDCl₃ (400 MHz), 25°C.

Fig. S8 ¹³C NMR of L-2 in CDCl₃(100 MHz), 25°C.

Fig. S9 MALDI-HRMS of L-2, 25 °C.

Fig. S10 ¹H NMR of Re-0 in CDCl₃ (400 MHz), 25°C.

Fig. S11 MALDI-HRMS of Re-0, 25 °C.

Fig. S12 MALDI-HRMS of Re-2, 25 °C.

Fig. S13 Infrared spectroscopy (IR) of Re-0.

Fig. S14 Infrared spectroscopy (IR) of Re-1.

Fig. S15 Infrared spectroscopy (IR) of Re-2.

Fig. S16 The emission spectra of the L-2 ($\lambda_{ex} = 579$ nm) under different atmosphere. $c = 1.0 \times 10^{-5}$ mol/dm³ in toluene, 25 °C.

Fig. S17 The calculated transient absorption spectra were presented as (a) **Re-1** and (b) **Re-2**. Toluene was used as solvent in the calculations. Note the bleaching bands cannot be predicted with the TDDFT calculated by DFT at the B3LYP/6-31G level using Gaussian 09W.

Fig. S18 Absorption and fluorescence spectra of perylene, $\lambda_{ex} = 390$ nm, $c = 1.0 \times 10^{-5}$ M. 20 °C.

Fig. S19 The emission spectra of the Re(I) complexes under different atmosphere. (a) Re-0 ($\lambda_{ex} = 400$ nm), (b) Re-1 ($\lambda_{ex} = 510$ nm), (c) Re-2 ($\lambda_{ex} = 570$ nm), (d) L-1 ($\lambda_{ex} = 525$ nm), (e) L-1 and Re-1 ($\lambda_{ex} = 525$ nm), (f) L-2 and Re-2 ($\lambda_{ex} = 578$ nm), $c = 1.0 \times 10^{-5}$ mol/dm³ in toluene, 25 °C.

Fig. S20 Comparison of the normalized UV/Vis absorption and the excitation spectra: a) Re-1, $\lambda_{em} = 640 \text{ nm}$, b) Re-2, $\lambda_{em} = 750 \text{ nm}$, c) Re-0, $\lambda_{em} = 670 \text{ nm}$, d) L-1, $\lambda_{em} = 650 \text{ nm}$ and e) L-2, $\lambda_{em} = 720 \text{ nm}$ (1.0 × 10⁻⁵ M in toluene, 20°C).

Fig. S21 Upconversion with a Shimadzu RF5301 spectrofluorometer, c [Re-1] = 1.0 × 10⁻⁵ M; c [Re-2] = 1.0 × 10⁻⁵ M; c [perylene] = 3.0 × 10⁻⁵ M; Power: 5 mW/cm². λ_{ex} = 544 nm. 25 °C.

Fig. S22 Quenching of the lifetime of the triplet photosensitizers with increasing the concentration of perylene. Decay curves of (a) Re-1, (b) Re-2, (c) B-2, (d) Stern–Volmer plots for the lifetime quenching. c [photosensitizers] = 1.0×10⁻⁵ mol/L, in deaerated toluene. 25 °C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Fig. S23 Delayed fluorescence lifetime decay curves observed in the TTA upconversion with (a) **Re-2** and (c) **B-2** as triplet photosensitizer and perylene as the triplet acceptor. Excited at 532 nm (nanosecond pulsed OPO laser synchronized with spectrofluorometer) and monitored at 445 nm. Under this circumstance the **Re-2** or B-2 is selectively excited. In deaerated toluene. *c* [Sensitizers] = 1.0×10^{-5} M; *c* [perylene] = 3.0×10^{-5} M; 25 °C.

Fig. S24 Photosensitizing of ${}^{1}O_{2}$ with the complexes as photosensitizers. Irradiation time-dependent decrease of absorbance at 301 nm of DHN (2.0×10^{-4} M) with different ${}^{1}O_{2}$ sensitizers. (a) **Re-1**, (b) **Re-2**, (c) **Re-0**, (d) TPP, (e) MB, (f) [Ir(ppy)₂(dpy)]⁺. *c* [sensitizers] = 2.0×10^{-5} M. *c* [DHN] = 2.0×10^{-4} M. In CH₂Cl₂/MeOH (9:1, v/v). 15 mW/cm². 25 °C.

Fig. S25 Absorption spectral changes for the photooxidation of DHN with different triplet photosensitizers (a) **Re-1**, (b) **Re-2**, (c) **Re-0**, (d) TPP, (e) MB, (f) $[Ir(ppy)_2(dpy)]^+$. $(1 \times 10^{-5} \text{ mol/dm}^3)$ under broad light ($\lambda > 385$ nm at 20 mW/cm²). In CH₂Cl₂/MeOH (9 : 1 v/v), 35 W Xenon lamp, light power density: 20 mW/cm². 25 °C.

Fig. S26 (a) ESR spectrum of a solution of **Re-1** $(1.0 \times 10^{-4} \text{ M})$ and TEMP (0.12 M) in air-saturated CH₃CN. (b) ESR spectrum of a solution of **Re-1** $(1.0 \times 10^{-4} \text{ M})$ and TEMP (0.12 M) in air-saturated CH₃CN upon irradiation for 20s by 532 nm laser (141 mW/cm²). (c) ESR spectrum of a solution of **Re-1** $(1.0 \times 10^{-4} \text{ M})$ DMPO $(2.0 \times 10^{-2} \text{ M})$ in air-saturated CH₃CN. (d) ESR spectrum of a solution of **Re-1** $(1.0 \times 10^{-4} \text{ M})$, DMPO $(2.0 \times 10^{-2} \text{ M})$, in air-saturated CH₃CN upon irradiation 20s for 532 nm laser 141 mW/cm². 22 °C

These results show that the singlet oxygen ($^{1}O_{2}$) was produced by **Re-1**, not $O_{2}^{\bullet-}$.

TEMP is scavenger for ${}^{1}O_{2}$, and DMPO is scavenger for $O_{2}^{\bullet-}$.

Fig. S27 Frontier molecular orbitals of **Re-2**. Calculated by DFT at the B3LYP/6-31G/LanL2DZ level using Gaussian 09W.

 Table S1. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (f), main configurations and CI coefficients of the Low-lying Electronically Excited States of complex Re-2, Calculated by TDDFT//B3LYP/6-31G/LanL2DZ, based on the DFT//B3LYP/6-31G/LanL2DZ Optimized Ground State Geometries.

	Electronic	TDDFT//B3LYP/6-31G				
	transition	Energy (eV) ^{<i>a</i>}	f^{b}	Composition ^c	CI ^d	character
Singlet	$S_0 \rightarrow S_1$	1.92 eV 646 nm	0.7348	H→L	0.6944	LLCT
	$S_0 \rightarrow S_2$	2.31 eV 537 nm	0.0236	$H \rightarrow L+1$	0.6936	MLCT
	$S_0 \rightarrow S_3$	2.46 eV 505 nm	0.0493	H-2→L	0.4592	LLCT
	$S_0 \rightarrow S_4$	2.51 eV 493 nm	0.7512	H−1→L	0.5928	LLCT
Triplet	$T_1 {\rightarrow} S_0$	1.42 eV 870 nm	0.0000 ^e	H→L	0.5661	LLCT
				H−1→L	0.2784	LLCT
	$T_2 {\rightarrow} S_0$	1.88 eV 658 nm	0.0000	H−1→L	0.3713	LLCT
				H→L	0.3140	LLCT
	$T_3 \rightarrow S_0$	2.10 eV 535 nm	0.0000	$H \rightarrow L+1$	0.4562	MLCT

^{*a*} Only the selected low-lying excited states are presented. ^{*b*} oscillator strength. ^{*c*} H stands for HOMO and L stands for LUMO. Only the main configurations are presented. ^{*d*} The CI coefficients are in absolute values. ^{*e*} No spin-orbital coupling effect was considered, thus the f values are zero.