Supporting Information

Aggregates of Triphenylene Based Chemosensing Ensemble for Sensitive Detection of Cyanide Ions in Aqueous Medium

Vandana Bhalla* Harshveer Arora and Manoj Kumar.

Department of Chemistry, UGC Sponsored Centre for Advance Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.

Page No.	Contents
S2	Effect of temperature on the absorption spectra of aggregates of copper
	ensemble of derivative 3
S 3	Effect of temperature on the fluorescence intensity of aggregates of copper
	ensemble of derivative 3
S4	XRD analysis of aggregates of copper ensemble of derivate 3
S5	¹ H NMR spectrum of 3
S6	Expanded ¹ H NMR spectrum of 3
S7	¹³ C NMR spectrum of 3
S8	Mass spectrum of 3
S9	Mass spectrum of Cu complex of 3
S10	Fluorescence emission spectra of $3.Cu^{2+}$ upon the addition of NaCN in tap
	water
S11-S12	Comparison of receptor 3 with other receptors reported in the literature

Effect of temperature on the absorption spectra of aggregates of copper ensemble of derivative 3

Figure S1: (**A**) Absorption spectra of aggregates of copper ensemble of derivative **3** upon increasing the temperature from 25 °C to 75 °C. (**B-C**) Change in the absorption intensity at 260 nm and 500 nm respectively upon increasing the temperature.

Effect of temperature on the fluorescence intensity of aggregates of copper ensemble of derivative 3

Figure: S2 (A) Fluorescence spectra of $3.Cu^{2+}$ upon increasing the temperature from 32 °C to 80 °C (B) Effect of increasing temperature on fluorescence intensity of aggregates of copper ensemble of 3, $3.Cu^{2+}$ in EtOH:H₂O (8:2) $\lambda_{ex} = 293$ nm.

XRD analysis of aggregates of copper ensemble of derivative 3

Figure S4: Powder XRD pattern of aggregates of copper ensemble of triphenylene derivative 3

¹H NMR spectrum of 3

Expanded ¹H NMR spectrum of 3

FAB Mass spectrum of 3

ESI Mass spectrum of Cu complex of 3

Fluorescence emission spectra of 3.Cu²⁺ upon the addition of NaCN in tap water

Figure S5: Fluorescence emission spectra of receptor $3.Cu^{2+}$ upon the addition of NaCN (0–300 equiv) in EtOH: H₂O (8:2) mixture. Inset shows fluorescence images of (A) copper ensemble, $3.Cu^{2+}$ (1x10⁻⁴ M) (B) $3.Cu^{2+}$ + NaCN in EtOH: H₂O (8:2) mixture.

Comparison of receptor 3 with other receptors reported in the literature

S.No.	References	Interference by other anions	Solvent system used for cyanide sensing	Detection limit of CN ⁻ ions	Ability to detect cyanide in tap water	Copper induced self- assembly
1	 R. Yang, W. Wu, W.Wang, Z. Li, J. Qin <i>Macromol.</i> <i>Chem. Phys.</i> 2010, 211, 18. 	Γ, OAC ⁻ , SO ₃ ²⁻	THF	0.47 ppm	NO	NO
2	Z. Li, X. Lou, H. Yu, Z. Li and J. Qin, <i>Macromolecules</i> , 2008, 41 , 7433.	I, F, SO4 ²⁻	THF	0.31 ppm	NO	NO
3.	Y. Liu, X. Lv, Y. Zhao, J. Liu, YQ. Sun, P. Wang and W. Guo <i>J. Mater</i> . <i>Chem.</i> , 2012, 22 , 1747.	NO	CH ₃ CN/H ₂ O [9:1 (v/v)]	0.13 ppm	NO	NO
4	S. Dong, D. Ou, J. Qin, Z. Li Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49 , 3314	Γ	THF	0.05 ppm	NO	NO
5	Q. Zeng, P. Cai, Z. Li, J. Qin and B. Z. Tang <i>Chem</i> . <i>Commun.</i> , 2008, 1094.	HPO ₄ ²⁻ , PO ₄ ³⁻	EtOH	1.82 ppm	NO	NO
6	X. Lou, Q. Zeng, Y. Zhang, Z. Wan, J. Qin and Z. Li <i>J. Mater. Chem.</i> , 2012, 22, 5581	NO	EtOH	0.078	YES	NO

7	YH.Tang, Y. Qu, Z. Song, XP. He, J. X., J. Hua and GR. Chen <i>Org. Biomol. Chem.</i> , 2012, 10 , 555	H ₂ PO ₄ ²⁻ , HSO ₄ ⁻	МеОН	0.001 ppm (0.000962 ppm)	NO	NO
8	HC. Gee, CH. Lee, Y H. Jeong and WD. Jang <i>Chem. Commun.</i> , 2011, 47 , 11963	NO	CH ₃ CN	*	NO	NO
9	J. Wang and CS. Ha Analyst, 2011, 136, 1627	NO ₃ -, H ₂ PO ₄ ⁻	H ₂ O:MeOH (2:5; v/v)	*	NO	NO
10	V.Bhalla, H. Singh and M. Kumar <i>Dalton Trans.</i> , 2012, 41, 11413.	NO	DMSO	0.15 ppm	YES	NO
11	Receptor 3	NO	H ₂ O:EtOH [2:8; (v/v)]	0.026 ppm	YES	YES

* No data available