Electronic Supplementary Information

for

A Triangular Prismatic Hexanuclear Iridium(III) Complex Bridged by Flavin Analogues Showing Reversible Redox Processes

Yuji Inui, Motoo Shiro, Takahiro Kusukawa, Shunichi Fukuzumi,^{*} and Takahiko Kojima^{*}

formula	$C_{90}H_{99}Cl_6F_{18}Ir_6N_{12}O_9P_3$	
fw	3293.78	
crystal system	trigonal	
space group	R3c	
<i>T</i> (K)	123	
a (Å)	16.0783(6)	
<i>c</i> (Å)	74.528(6)	
$V(\text{\AA}^3)$	16685.1(15)	
Ζ	6	
no. of reflections measured	31593	
no. of observations	2214	
no. of parameters refined	211	
$R1^a$	0.0965	
$R_W^{\ \ b}$	0.2415 $(I > 2.0\sigma(I))^c$	
GOF	1.092	
CCDC no.	888985	

Table S1. X-ray crystallographic data for 1•PF₆.

^{*a*} $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. ^{*b*} $Rw = [\Sigma (w (F_0^2 - F_c^2)^2) / \Sigma w (F_0^2)^2]^{1/2}$. ^{*c*} $w = 1 / [\sigma^2 (F_0^2) + (0.1361P)^2 + 1691.4005P]$, where $P = (Max(F_0^2, 0) + 2F_c^2) / 3$

Ir1 – O1	2.14(4)	N1 – Ir1 – O1	72.5(11)
Ir1 – N1	2.17(3)	N1 -Ir1 - N3	87.1(14)
Ir2 - N2	1.98(3)	O1-Ir1-N3	82.7(13)
Ir2 - O2	2.22(4)	Ir1 - O1 - C12	119 (3)
Ir2 - O3	2.13(4)	Ir1 - N1 - C11	111.7(17)
Ir1 – N3	2.16(2)	Ir1 - N3 - C13	118.1(18)
O1 – C12	1.23(4)	Ir1 - N3 - C14	121 (2)
N1 – C11	1.35(4)	O1 – C12 – C11	116 (3)
N1 – C20	1.35(4)	N1 – C11 – C12	116(2)
N2 – C12	1.39(5)	N2 - Ir2 - O2	60.6(12)
N2 – C13	1.39(4)	N2 - Ir2 - O3	91.0(13)
O2 – C13	1.10(5)	Ir2 - N2 - C13	92.3(19)
N3 – C13	1.39(5)	Ir2 - O2 - C13	89(3)
N3 – C14	1.39(5)	O2 - C13 - N2	118(3)
N4 – C14	1.35(4)	O2 - C13 - N3	122(3)
N4 – C15	1.35(4)		
C11 – C12	1.39(5)		

Table S2. Selected bond lengths (Å) and angles (deg) of 1

Fig. S1 DOSY spectra of **1** (2.8 mM) at room temperature in CD₂Cl₂ after 48 h since making sample: (a) Low magnetic field; (b) high magnetic field.

Fig. S2 ¹H NMR spectra of **1** (2.8 mM) at room temperature in CD_2Cl_2 after 0.5 h, 24 h and 48 h: (a) Low magnetic field; (b) high magnetic field.

Fig. S3 (a) ESI-MS spectrum of **1** in CH₃OH at room temperature. (b) Calculated mass number of $[{Ir(Cp^*)}_6(alloCl_2)_3(CH_3O)_3]^{3+}$ (black line) and $[{Ir(Cp^*)}_2(alloCl_2)Cl]^+$ (dotted line).

Fig. S4 Change of spin concentration of reduced species of 1 relative to the ratio of $[CoCp_2]/[1]$. The spin concentration was represented by the percentage of double integration of the signals due to the reduced species of 1 relative to that of the same concentration of DPPH (2,2-diphenyl-1-picrylhydrazyl).

References

- [1] A. D. Becke, J. Chem. Phys., 1993, 98, 5648; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- [2] W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, *Ab Initio Molecular Orbital Theory*, Wiley, New York, 1986.
- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, J. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,; G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,; A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03, Revision C.02*, Gaussian, Inc., Wallingford CT, 2004.